scispace - formally typeset
Search or ask a question
Topic

Transcription (biology)

About: Transcription (biology) is a research topic. Over the lifetime, 56532 publications have been published within this topic receiving 2952782 citations. The topic is also known as: genetic transcription & transcription, genetic.


Papers
More filters
Journal ArticleDOI
16 Oct 1997-Nature
TL;DR: A primary role for region 2 is defined and a negligible role for chromosomal location is defined in Igf2r imprinting; they show that methylation imprints can maintain allelic expression and that expression competition could play a general role in imprinting.
Abstract: Gametic imprinting is a developmental process that induces parental-specific expression or repression of autosomal and X-chromosome-linked genes. The mouse Igf2r gene (encoding the receptor for insulin- like growth factor type-2) is imprinted and is expressed from the maternal allele after embryonic implantation. We previously proposed that methylation of region 2, a region rich in cytosine-guanine doublets (a 'CpG island') in the second intron of Igf2r, is the imprinting signal that maintains expression of the maternal allele. Here we use mouse transgenes to test the role of region 2 and the influence of chromosome location on Igf2r imprinting. Yeast artificial chromosome transgenes successfully reproduced the imprinted methylation and expression pattern of the endogenous Igf2r gene; deletion of region 2 from these transgenes caused a loss of imprinting and restored biallelic Igf2r expression. These results define a primary role for region 2 and a negligible role for chromosomal location in Igf2r imprinting; they also show that methylation imprints can maintain allelic expression. Short transgenes containing only region 2 and yeast artificial chromosome transgenes with an inactive Igf2r promoter do not attract parental-specific methylation. All transgenes showing paternal-specific repression of Igf2r produced an antisense RNA whose transcription was dependent on region 2. The production of an antisense RNA by the repressed parental allele is reminiscent of the imprinting of the Igf2/H19 gene pair and may indicate that expression competition could play a general role in imprinting.

600 citations

Journal ArticleDOI
05 Dec 2008-Science
TL;DR: The identification and characterization of the Arabidopsis CIB1 (cryptochrome-interacting basic-helix-loop-Helix) protein is reported, and it is proposed that the blue light–dependent interaction of cryptochrome(s) with C IB1 and CIB 1-related proteins represents an early photoreceptor signaling mechanism in plants.
Abstract: Cryptochromes (CRY) are photolyase-like blue-light receptors that mediate light responses in plants and animals. How plant cryptochromes act in response to blue light is not well understood. We report here the identification and characterization of the Arabidopsis CIB1 (cryptochrome-interacting basic-helix-loop-helix) protein. CIB1 interacts with CRY2 (cryptochrome 2) in a blue light-specific manner in yeast and Arabidopsis cells, and it acts together with additional CIB1-related proteins to promote CRY2-dependent floral initiation. CIB1 binds to G box (CACGTG) in vitro with a higher affinity than its interaction with other E-box elements (CANNTG). However, CIB1 stimulates FT messenger RNA expression, and it interacts with chromatin DNA of the FT gene that possesses various E-box elements except G box. We propose that the blue light-dependent interaction of cryptochrome(s) with CIB1 and CIB1-related proteins represents an early photoreceptor signaling mechanism in plants.

599 citations

Journal ArticleDOI
10 Mar 1995-Cell
TL;DR: It is suggested that Mad-Max represses transcription by tethering mSin3 to DNA as corepressors and that a transcriptional repression mechanism is conserved from yeast to mammals.

598 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms underlying the acetylation effects on chromatin condensation were investigated by analyzing the ability of differentially acetylated nucleosomal arrays to fold and oligomerize and yielded new insight into the molecular basis of acetylations effects on both transcription and higher-order compaction of nucleosomes.
Abstract: We have examined the effects of core histone acetylation on the transcriptional activity and higher-order folding of defined 12-mer nucleosomal arrays. Purified HeLa core histone octamers containing an average of 2, 6, or 12 acetates per octamer (8, 23, or 46% maximal site occupancy, respectively) were assembled onto a DNA template consisting of 12 tandem repeats of a 208-bp Lytechinus 5S rRNA gene fragment. Reconstituted nucleosomal arrays were transcribed in a Xenopus oocyte nuclear extract and analyzed by analytical hydrodynamic and electrophoretic approaches to determine the extent of array compaction. Results indicated that in buffer containing 5 mM free Mg2+ and 50 mM KCl, high levels of acetylation (12 acetates/octamer) completely inhibited higher-order folding and concurrently led to a 15-fold enhancement of transcription by RNA polymerase III. The molecular mechanisms underlying the acetylation effects on chromatin condensation were investigated by analyzing the ability of differentially acetylated nucleosomal arrays to fold and oligomerize. In MgCl2-containing buffer the folding of 12-mer nucleosomal arrays containing an average of two or six acetates per histone octamer was indistinguishable, while a level of 12 acetates per octamer completely disrupted the ability of nucleosomal arrays to form higher-order folded structures at all ionic conditions tested. In contrast, there was a linear relationship between the extent of histone octamer acetylation and the extent of disruption of Mg2+-dependent oligomerization. These results have yielded new insight into the molecular basis of acetylation effects on both transcription and higher-order compaction of nucleosomal arrays.

596 citations

Journal ArticleDOI
30 Nov 1990-Science
TL;DR: Recombination occurs at a high rate in retroviral replication, and its observation requires a virion containing two different RNA molecules (heterodimeric particles).
Abstract: Recombination occurs at a high rate in retroviral replication, and its observation requires a virion containing two different RNA molecules (heterodimeric particles). Analysis of retroviral recombinants formed after a single round of replication revealed that (i) the nonselected markers changed more frequently than expected from the rate of recombination of selected markers; (ii) the transfer of the initially synthesized minus strand strong stop DNA was either intramolecular or intermolecular; (iii) the transfer of the first synthesized plus strand strong stop DNA was always intramolecular; and (iv) there was a strong correlation between the type of transfer of the minus strand strong stop DNA and the number of template switches observed. These data suggest that retroviral recombination is ordered and occurs during the synthesis of both minus and plus strand DNA.

595 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
97% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Transcription factor
82.8K papers, 5.4M citations
96% related
Peptide sequence
84.1K papers, 4.3M citations
95% related
Gene
211.7K papers, 10.3M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20229
20211,730
20201,721
20191,686
20181,571
20171,465