scispace - formally typeset
Search or ask a question
Topic

Transcription (biology)

About: Transcription (biology) is a research topic. Over the lifetime, 56532 publications have been published within this topic receiving 2952782 citations. The topic is also known as: genetic transcription & transcription, genetic.


Papers
More filters
Journal ArticleDOI
TL;DR: The cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle are reviewed and how this may lead to potential new approaches to drug development in diseases such as cancer is discussed.
Abstract: Nucleotides are required for a wide variety of biological processes and are constantly synthesized de novo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and several sources of carbon and nitrogen. The processes are regulated at the transcription level by a set of master transcription factors but also at the enzyme level by allosteric regulation and feedback inhibition. Here we review the cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle. The use of stable isotope tracers for delineating the biosynthetic routes of the multiple intersecting pathways and how these are quantitatively controlled under different conditions is also highlighted. Moreover, the importance of nucleotide synthesis for cell viability is discussed and how this may lead to potential new approaches to drug development in diseases such as cancer.

595 citations

Journal ArticleDOI
08 Dec 1995-Science
TL;DR: The force produced by a single molecule of Escherichia coli RNA polymerase during transcription was measured optically and is substantially larger than those measured for the cytoskeletal motors kinesin and myosin and exceeds mechanical loads that are estimated to oppose transcriptional elongation in vivo.
Abstract: The force produced by a single molecule of Escherichia coli RNA polymerase during transcription was measured optically. Polymerase immobilized on a surface was used to transcribe a DNA template attached to a polystyrene bead 0.5 micrometer in diameter. The bead position was measured by interferometry while a force opposing translocation of the polymerase along the DNA was applied with an optical trap. At saturating nucleoside triphosphate concentrations, polymerase molecules stalled reversibly at a mean applied force estimated to be 14 piconewtons. This force is substantially larger than those measured for the cytoskeletal motors kinesin and myosin and exceeds mechanical loads that are estimated to oppose transcriptional elongation in vivo. The data are consistent with efficient conversion of the free energy liberated by RNA synthesis into mechanical work.

593 citations

Journal ArticleDOI
28 May 2010-Cell
TL;DR: It is shown how RNA viruses can manipulate multiple components of the cellular secretory pathway to generate organelles specialized for replication that are distinct in protein and lipid composition from the host cell.

593 citations

Journal ArticleDOI
TL;DR: It is established that the expression of human TFB1M and TFB2M promoters is governed by nuclear respiratory factors (NRF-1 and NRF-2), key transcription factors implicated in mitochondrial biogenesis, and it is shown that NRF recognition sites within both TFB promoters are required for maximal trans activation by the P GC-1 family coactivators, PGC-1α and PRC.
Abstract: In vertebrates, mitochondrial DNA (mtDNA) transcription is initiated bidirectionally from closely spaced promoters, HSP and LSP, within the D-loop regulatory region. Early studies demonstrated that mtDNA transcription requires mitochondrial RNA polymerase and Tfam, a DNA binding stimulatory factor that is required for mtDNA maintenance. Recently, mitochondrial transcription specificity factors (TFB1M and TFB2M), which markedly enhance mtDNA transcription in the presence of Tfam and mitochondrial RNA polymerase, have been identified in mammalian cells. Here, we establish that the expression of human TFB1M and TFB2M promoters is governed by nuclear respiratory factors (NRF-1 and NRF-2), key transcription factors implicated in mitochondrial biogenesis. In addition, we show that NRF recognition sites within both TFB promoters are required for maximal trans activation by the PGC-1 family coactivators, PGC-1α and PRC. The physiological induction of these coactivators has been associated with the integration of NRFs and other transcription factors in a program of mitochondrial biogenesis. Finally, we demonstrate that the TFB genes are up-regulated along with Tfam and either PGC-1α or PRC in cellular systems where mitochondrial biogenesis is induced. Moreover, ectopic expression of PGC-1α is sufficient to induce the coordinate expression of all three nucleus-encoded mitochondrial transcription factors along with nuclear and mitochondrial respiratory subunits. These results support the conclusion that the coordinate regulation of nucleus-encoded mitochondrial transcription factors by NRFs and PGC-1 family coactivators is essential to the control of mitochondrial biogenesis.

590 citations

Journal ArticleDOI
26 Apr 1990-Nature
TL;DR: The eukaryotic upstream binding factor (DBF) recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I through cooperative interactions with the species-specific factor, SL1 as mentioned in this paper.
Abstract: The eukaryotic upstream binding factor (DBF), recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA poly-merase I through cooperative interactions with the species-specific factor, SL1. Isolation of complementary DNA clones and sequence analysis reveals similarities between DNA binding domains of human UBF (hUBF) and high mobility group (HMG) protein 1. Expression, cellular localization and in vitro transcription studies establish that cloned hUBF encodes a nucleolar factor that binds specifically to the upstream control element and core of the rRNA gene promoter to activate transcription in a binding site-dependent manner.

589 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
97% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Transcription factor
82.8K papers, 5.4M citations
96% related
Peptide sequence
84.1K papers, 4.3M citations
95% related
Gene
211.7K papers, 10.3M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20229
20211,730
20201,721
20191,686
20181,571
20171,465