scispace - formally typeset
Search or ask a question

Showing papers on "Transcription Factor CHOP published in 1998"


Journal ArticleDOI
TL;DR: Compared with the wild type, mouse embryonic fibroblasts derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function, and the proximal tubule epithelium of chop -/+ animals exhibited fourfold lower levels of TUNEL-positive cells, and significantly less evidence for subsequent regeneration.
Abstract: Cellular stress, particularly in response to toxic and metabolic insults that perturb function of the endoplasmic reticulum (ER stress), is a powerful inducer of the transcription factor CHOP. The role of CHOP in the response of cells to injury associated with ER stress was examined in a murine deficiency model obtained by homologous recombination at the chop gene. Compared with the wild type, mouse embryonic fibroblasts (MEFs) derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function. A similar deficit in programmed cells death in response to ER stress was also observed in MEFs that lack CHOP's major dimerization partner, C/EBPbeta, implicating the CHOP-C/EBP pathway in programmed cell death. An animal model for studying the effects of chop on the response to ER stress was developed. It entailed exposing mice with defined chop genotypes to a single sublethal intraperitoneal injection of tunicamycin and resulted in a severe illness characterized by transient renal insufficiency. In chop +/+ and chop +/- mice this was associated with the early expression of CHOP in the proximal tubules followed by the development of a histological picture similar to the human condition known as acute tubular necrosis, a process that resolved by cellular regeneration. In the chop -/- animals, in spite of the severe impairment in renal function, evidence of cellular death in the kidney was reduced compared with the wild type. The proximal tubule epithelium of chop -/- animals exhibited fourfold lower levels of TUNEL-positive cells (a marker for programmed cell death), and significantly less evidence for subsequent regeneration. CHOP therefore has a role in the induction of cell death under conditions associated with malfunction of the ER and may also have a role in cellular regeneration under such circumstances.

1,935 citations


Journal ArticleDOI
TL;DR: The cloning of a murine homolog of yeast IRE1, an essential upstream component of the ER stress‐ response in yeast, is reported on, indicating that a single upstream component, Ire1, plays a role in multiple facets of theER stress‐response in mammalian cells.
Abstract: Cells modify their gene expression pattern in response to stress signals emanating from the endoplasmic reticulum (ER). The well-characterized aspect of this response consists of the activation of genes that encode protein chaperones and other ER resident proteins, and is conserved between mammals and yeast. In mammalian cells, however, ER stress also activates other pathways, including the expression of the transcription factor CHOP/GADD153 and its downstream target genes. ER stress is also linked to the development of programmed cell death, a phenomenon in which CHOP plays an important role. Here we report on the cloning of a murine homolog of yeast IRE1, an essential upstream component of the ER stress-response in yeast. The mammalian Ire1 is located in the ER membrane and its over-expression in mammalian cells activates both the endogenous ER chaperone GRP78/BiP and CHOP-encoding genes. Over-expression of a dominant-negative form of Ire1 blocks the induction of GRP78/BiP and CHOP in response to the ER stress induced by tunicamycin treatment. Over-expression of murine Ire1 also leads to the development of programmed cell death in transfected cells. These results indicate that a single upstream component, Ire1, plays a role in multiple facets of the ER stress-response in mammalian cells.

776 citations


Journal ArticleDOI
TL;DR: Comparing the complement of genes expressed in stressed wild‐type mouse embryonic fibroblasts with those expressed in cells nullizygous for chop reveals the existence of a novel CHOP‐dependent signaling pathway, distinct from the known endoplasmic reticulum unfolded protein response, which may mediate changes in cell phenotype in response to stress.
Abstract: CHOP (GADD153) is a small nuclear protein that dimerizes avidly with members of the C/EBP family of transcription factors. Normally undetectable, it is expressed at high levels in cells exposed to conditions that perturb protein folding in the endoplasmic reticulum and induce an endoplasmic reticulum stress response. CHOP expression in stressed cells is linked to the development of programmed cell death and, in some instances, cellular regeneration. In this study, representational difference analysis was used to compare the complement of genes expressed in stressed wild-type mouse embryonic fibroblasts with those expressed in cells nullizygous for chop. CHOP expression, in concert with a second signal, was found to be absolutely required for the activation by stress of a set of previously undescribed genes referred to as DOCs (for downstream of CHOP). DOC4 is a mammalian ortholog of a Drosophila gene, Tenm/Odz, implicated in patterning of the early fly embryo, whereas DOC6 encodes a newly recognized homolog of the actin-binding proteins villin and gelsolin. These results reveal the existence of a novel CHOP-dependent signaling pathway, distinct from the known endoplasmic reticulum unfolded protein response, which may mediate changes in cell phenotype in response to stress.

319 citations


Journal ArticleDOI
TL;DR: C/EBP are expressed in a differentiation-associated manner in the skin, and may play an important role in regulating one or more aspects of the epidermal differentiation program.

133 citations


Journal ArticleDOI
29 Oct 1998-Oncogene
TL;DR: It is found that ectopic expression of v-myc in RAT-1 cells results in an attenuated induction of the three major gadd transcripts by methyl methanesulfonate (MMS), and almost completely blocks the response to ultraviolet (UV) radiation.
Abstract: The growth arrest and DNA damage inducible (gadd) genes are induced by various genotoxic and non-genotoxic stresses such as serum starvation, ultraviolet irradiation and treatment with alkylating agents. Their coordinate induction is a growth arrest signal which may play an important role in the response of cells to DNA damage. Conversely, c-myc is a strong proliferative signal, and overexpression of Myc is frequently observed in cancer cells. We have found that ectopic expression of v-myc in RAT-1 cells results in an attenuated induction of the three major gadd transcripts by methyl methanesulfonate (MMS), and almost completely blocks the response to ultraviolet (UV) radiation. Myc acts in part by reducing the stress-responsiveness of the gadd45 promoter, as a c-myc expression vector strongly suppressed activation of gadd45-reporter constructs. This activity of Myc localizes to a recently described GC-rich binding site within the gadd45 promoter. These results indicate that a coordinate down-regulation of the gadd gene response is one mechanism by which Myc can circumvent growth arrest and contribute to the neoplastic phenotype.

84 citations


Journal ArticleDOI
TL;DR: It is demonstrated that TLS-CHOP blocks adipocyte differentiation by directly preventing C/EBPβ from binding to and transactivating its target genes, providing strong support for the thesis that a blockade to normal differentiation is an important aspect of the cancer process.

70 citations