scispace - formally typeset
Search or ask a question

Showing papers on "Transcription Factor CHOP published in 2009"


Journal ArticleDOI
TL;DR: CHOP turns on ERO1-α to release calcium via IP3R and trigger cell death in response to ER stress.
Abstract: Endoplasmic reticulum (ER) stress–induced apoptosis is involved in many diseases, but the mechanisms linking ER stress to apoptosis are incompletely understood. Based on roles for C/EPB homologous protein (CHOP) and ER calcium release in apoptosis, we hypothesized that apoptosis involves the activation of inositol 1,4,5-triphosphate (IP3) receptor (IP3R) via CHOP-induced ERO1-α (ER oxidase 1 α). In ER-stressed cells, ERO1-α is induced by CHOP, and small interfering RNA (siRNA) knockdown of ERO1-α suppresses apoptosis. IP3-induced calcium release (IICR) is increased during ER stress, and this response is blocked by siRNA-mediated silencing of ERO1-α or IP3R1 and by loss-of-function mutations in Ero1a or Chop. Reconstitution of ERO1-α in Chop−/− macrophages restores ER stress–induced IICR and apoptosis. In vivo, macrophages from wild-type mice but not Chop−/− mice have elevated IICR when the animals are challenged with the ER stressor tunicamycin. Macrophages from insulin-resistant ob/ob mice, another model of ER stress, also have elevated IICR. These data shed new light on how the CHOP pathway of apoptosis triggers calcium-dependent apoptosis through an ERO1-α–IP3R pathway.

498 citations


Journal ArticleDOI
TL;DR: Data provide direct evidence for a causal link between the ER stress effector CHOP and plaque necrosis and suggest that interventions weakening this arm of the UPR may lessen plaque progression.

332 citations


Journal ArticleDOI
TL;DR: It is concluded that RDC11 acts by an atypical pathway involving CHOP and endoplasmic reticulum stress, and thus might provide an interesting alternative for anticancer therapy.
Abstract: Cisplatin-derived anticancer therapy has been used for three decades despite its side effects Other types of organometallic complexes, namely, some ruthenium-derived compounds (RDC), which would display cytotoxicity through different modes of action, might represent alternative therapeutic agents We have studied both in vitro and in vivo the biological properties of RDC11, one of the most active compounds of a new class of RDCs that contain a covalent bond between the ruthenium atom and a carbon We showed that RDC11 inhibited the growth of various tumors implanted in mice more efficiently than cisplatin Importantly, in striking contrast with cisplatin, RDC11 did not cause severe side effects on the liver, kidneys, or the neuronal sensory system We analyzed the mode of action of RDC11 and showed that RDC11 interacted poorly with DNA and induced only limited DNA damages compared with cisplatin, suggesting alternative transduction pathways Indeed, we found that target genes of the endoplasmic reticulum stress pathway, such as Bip, XBP1, PDI, and CHOP, were activated in RDC11-treated cells Induction of the transcription factor CHOP, a crucial mediator of endoplasmic reticulum stress apoptosis, was also confirmed in tumors treated with RDC11 Activation of CHOP led to the expression of several of its target genes, including proapoptotic genes In addition, the silencing of CHOP by RNA interference significantly reduced the cytotoxicity of RDC11 Altogether, our results led us to conclude that RDC11 acts by an atypical pathway involving CHOP and endoplasmic reticulum stress, and thus might provide an interesting alternative for anticancer therapy

200 citations


Journal ArticleDOI
TL;DR: It is demonstrated that loss of HtrA2 results in transcriptional upregulation of nuclear genes characteristic of the integrated stress response, including the transcription factor CHOP, selectively in the brain, and proposed that this brain-specific transcriptional response to stress may be important in the advance of neurodegenerative diseases.
Abstract: Cellular stress responses can be activated following functional defects in organelles such as mitochondria and the endoplasmic reticulum. Mitochondrial dysfunction caused by loss of the serine protease HtrA2 leads to a progressive movement disorder in mice and has been linked to parkinsonian neurodegeneration in humans. Here, we demonstrate that loss of HtrA2 results in transcriptional upregulation of nuclear genes characteristic of the integrated stress response, including the transcription factor CHOP, selectively in the brain. We also show that loss of HtrA2 results in the accumulation of unfolded proteins in the mitochondria, defective mitochondrial respiration and enhanced production of reactive oxygen species that contribute to the induction of CHOP expression and to neuronal cell death. CHOP expression is also significantly increased in Parkinson's disease patients' brain tissue. We therefore propose that this brain-specific transcriptional response to stress may be important in the advance of neurodegenerative diseases.

161 citations


Journal ArticleDOI
TL;DR: The drug induces maturation of MLS lipoblasts in vivo by targeting the FUS-CHOP–mediated transcriptional block and provides a rationale for the specific activity of trabectedin and opens the perspective of combinatorial treatments with drugs acting on lipogenic pathways.
Abstract: Differentiation is a complex set of events that can be blocked by rearrangements of regulatory genes producing fusion proteins with altered properties. In the case of myxoid liposarcoma (MLS) tumors, the causative abnormality is a fusion between the CHOP transcription factor and the FUS or EWS genes. CHOP belongs to and is a negative regulator of the large CAAT/enhancer binding protein family whose alpha, beta, and delta members are master genes of adipogenesis. Recent clinical data indicate a peculiar sensitivity of these tumors to the natural marine compound trabectedin. One hypothesis is that the activity of trabectedin is related to the inactivation of the FUS-CHOP oncogene. We find that trabectedin causes detachment of the FUS-CHOP chimera from targeted promoters. Reverse transcription-PCR and chromatin immunoprecipitation analysis in a MLS line and surgical specimens of MLS patients in vivo show activation of the CAAT/enhancer binding protein-mediated transcriptional program that leads to morphologic changes of terminal adipogenesis. The activity is observed in cells with type 1 but not type 8 fusions. Hence, the drug induces maturation of MLS lipoblasts in vivo by targeting the FUS-CHOP-mediated transcriptional block. These data provide a rationale for the specific activity of trabectedin and open the perspective of combinatorial treatments with drugs acting on lipogenic pathways.

158 citations


Journal ArticleDOI
TL;DR: The expression levels and localization of CHOP in spinal cords of both sporadic ALS patients and ALS transgenic mice by immunohistochemistry indicate that the up-regulation ofCHOP in motor neurons and glial cells may play pivotal roles in the pathogenesis of ALS.

118 citations


Journal ArticleDOI
TL;DR: Assessment of the role of the eIF2 kinases and protein kinase R-like endoplasmic reticulum resident kinase (PERK) in controlling AADR to asparaginase and the effects of asparaginease on mTORC1 to that of rapamycin indicate that GCN2 is required for activation of AADr to asParaginase in liver.

115 citations


Journal ArticleDOI
12 Aug 2009-PLOS ONE
TL;DR: It is reported that hepcidin, a liver secreted hormone that shepherds iron homeostasis, exhibits a biphasic pattern of expression following UPR activation, and it is shown that immediately after stressing the ER, the stress-inducible transcription factor CHOP depletes C/EBPα protein pool, which may in turn impact on the activation of hePCidin transcription.
Abstract: Endoplasmic reticulum (ER) stress induces a complex network of pathways collectively termed the unfolded protein response (UPR). The clarification of these pathways has linked the UPR to the regulation of several physiological processes. However, its crosstalk with cellular iron metabolism remains unclear, which prompted us to examine whether an UPR affects the expression of relevant iron-related genes. For that purpose, the HepG2 cell line was used as model and the UPR was activated by dithiothreitol (DTT) and homocysteine (Hcys). Here, we report that hepcidin, a liver secreted hormone that shepherds iron homeostasis, exhibits a biphasic pattern of expression following UPR activation: its levels decreased in an early stage and increased with the maintenance of the stress response. Furthermore, we show that immediately after stressing the ER, the stress-inducible transcription factor CHOP depletes C/EBPα protein pool, which may in turn impact on the activation of hepcidin transcription. In the later period of the UPR, CHOP levels decreased progressively, enhancing C/EBPα-binding to the hepcidin promoter. In addition, analysis of ferroportin and ferritin H revealed that the transcript levels of these iron-genes are increased by the UPR signaling pathways. Taken together, our findings suggest that the UPR can have a broad impact on the maintenance of cellular iron homeostasis.

100 citations


Journal ArticleDOI
TL;DR: Findings suggest that this BiP inducer may have the potential to be a therapeutic agent for endoplasmic reticulum (ER) stress-induced retinal diseases.
Abstract: Purpose The effect of a preferential inducer of 78 kDa glucose-regulated protein (GRP78)/immunoglobulin heavy-chain binding protein (BiP; BiP inducer X, BIX) against tunicamycin-induced cell death in RGC-5 (a rat ganglion cell line), and also against tunicamycin- or N-methyl-D-aspartate (NMDA)-induced retinal damage in mice was evaluated. Methods In vitro, BiP mRNA was measured after BIX treatment using semi-quantitative RT-PCR or real-time PCR. The effect of BIX on tunicamycin (at 2 microg/mL)-induced damage was evaluated by measuring the cell-death rate and CHOP protein expression. In vivo, BiP protein induction was examined by immunostaining. The retinal cell damage induced by tunicamycin (1 microg) or NMDA (40 nmol) was assessed by examining ganglion cell layer (GCL) cell loss, terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, and CHOP protein expression. Results In vitro, BIX preferentially induced BiP mRNA expression both time- and concentration-dependently in RGC-5 cells. BIX (1 and 5 microM) significantly reduced tunicamycin-induced cell death, and BIX (5 microM) significantly reduced tunicamycin-induced CHOP protein expression. In vivo, intravitreal injection of BIX (5 nmol) significantly induced BiP protein expression in the mouse retina. Co-administration of BIX (5 nmol) significantly reduced both the retinal cell death and the CHOP protein expression in GCL induced by intravitreal injection of tunicamycin or NMDA. Conclusions These findings suggest that this BiP inducer may have the potential to be a therapeutic agent for endoplasmic reticulum (ER) stress-induced retinal diseases.

83 citations


Journal ArticleDOI
TL;DR: Several studies of UPR diseases involving myelinating glia of the central and peripheral nervous systems that do not support a primary role for CHOP in apoptosis demonstrate that CHOP should be viewed more broadly as a cell-specific and context-specific mediator of adaptive or maladaptive responses to stress rather than a proapoptotic transcription factor.

66 citations


Journal ArticleDOI
08 May 2009-PLOS ONE
TL;DR: Findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells in the BioBreeding diabetes-prone rat.
Abstract: Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5−/− BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5−/− T cells. Knockdown of CHOP by siRNA protected Gimap5−/− T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells.

Journal ArticleDOI
TL;DR: It is concluded thatDDIT3 binds CDK2 and that many of the observed biological effects of DDIT3 may involve interaction withCDK2.
Abstract: The DDIT3 gene encodes a transcription factor belonging to the CCAAT/enhancer binding protein (C/EBP) family. It is normally expressed at very low levels but is activated by cellular stress conditions and induces G1 arrest and, in some cell types, apoptosis. DDIT3 is found as a part of the fusion oncogene FUS-DDIT3 that is causal for the development of myxoid/round-cell liposarcomas (MLS/RCLS). In the present study, we searched for putative interaction partners of DDIT3 and the oncogenic FUS-DDIT3 among G1 cyclins and cyclin-dependent kinases. We found that FUS-DDIT3 and the normal DDIT3 bind CDK2. In addition, CDK2 showed an increased affinity for cytoskeletal proteins in cells expressing FUS-DDIT3 and DDIT3. We conclude that DDIT3 binds CDK2 and that many of the observed biological effects of DDIT3 may involve interaction with CDK2.

Journal ArticleDOI
TL;DR: It is concluded that Grp 78 may contribute to the response of beta-cells to ER stress, and more attention should be paid to Grp78 in the improvement of diabetes.
Abstract: Endoplasmic reticulum (ER) stress-mediated apoptosis plays an important role in the destruction of pancreatic beta-cells and contributes to the development of type 1 diabetes. The chaperone molecule, glucose-regulated proteins 78 (Grp78), is required to maintain ER function during toxic insults. In this study, we investigated the changes of Grp78 expression in different phases of streptozotocin (STZ)-affected beta-cells to explore the relationship between Grp78 and the response of beta-cells to ER stress. An insulinoma cell line (NIT-1) treated with STZ for different time periods and STZ-induced diabetic Balb/C mice at different time points were used as the model system. The level of Grp78 and C/EBP homologous protein (CHOP) mRNA were detected by real-time polymerase chain reaction and their protein by immunoblot. Apoptosis and necrosis was measured by flow cytometry. In addition, the changes of Grp78 protein in STZ-treated nondiabetic mice were also detected by immunoblot. Grp78 expression significantly increased in the early phase but decreased in the later phase of affected beta-cells, while CHOP was induced and apoptosis occurred along with the decrease of Grp78. Interestingly, the Grp78 protein of STZ-treated nondiabetic mice increased stably compared with that of the control. From the results, we can conclude that Grp78 may contribute to the response of beta-cells to ER stress, and more attention should be paid to Grp78 in the improvement of diabetes.

Journal ArticleDOI
TL;DR: The present findings raise the possibility that cal-C may be useful for photodynamic therapy based on induction of ER stress in some forms of cancer.

Journal ArticleDOI
TL;DR: Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and eIF2 α phosphorylation and Treatments that stabilize P-eIF2α levels may be effective in treating Erb B2 positive cancers without severely disrupting normal tissue function and structure.
Abstract: The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in ~30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2α inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2α can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival. Here we explore whether ErbB2 modulates eIF2α phosphorylation and whether forced phosphorylation of the latter can antagonize ErbB2 deregulation of mammary acinar morphogenesis. We tested whether ErbB2 signaling influenced eIF2α signaling and whether enhanced phosphorylation of the latter affected ErbB2-deregulated mammary acinar development. We obtained stable MCF10A cells overexpressing wild-type (Wt) Neu/ErbB2 or a constitutively active (CA) variant via retroviral delivery or mammary tumor cells from MMTV-Neu tumors. Western blotting, RT-PCR and confocal microscopy were used to analyze the effects of ErbB2 activation on eIF2α signaling and the effect of the GADD34-PP1C inhibitor salubrinal. Wt- and MMTV-Neu cells formed aberrant acini structures resembling DCIS, while CA-ErbB2 overexpression induced invasive lesions. In these structures we found that CA-ErbB2 but not the Wt variant significantly down-regulated the pro-apoptotic gene CHOP. This occurred without apparent modulation of basal phosphorylation of PERK and eIF2α or induction of its downstream target ATF4. However, inhibition of eIF2α dephosphorylation with salubrinal was sufficient to inhibit Wt- and CA-ErbB2- as well as MMTV-Neu-induced deregulation of acinar growth. This was linked to enhanced CHOP expression, inhibition of proliferation, induction of apoptosis and luminal clearing in Wt-ErbB2 and to inhibition of cyclin D1 levels and subsequent proliferation in CA-ErbB2 cells. Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and eIF2α phosphorylation. ErbB2 uncouples in basal conditions eIF2α phosphorylation from CHOP induction. However, this signal was restored by salubrinal treatment in Wt-ErbB2 expressing MCF10A cells as these DCIS-like structures underwent luminal clearing. In CA-ErbB2 structures apoptosis is not induced by salubrinal and instead a state of quiescence with reduced proliferation was achieved. Treatments that stabilize P-eIF2α levels may be effective in treating ErbB2 positive cancers without severely disrupting normal tissue function and structure.

Journal ArticleDOI
TL;DR: It is indicated that IGF-1R contributes to cholestatic liver injury, and the involvement of both CHOP and Bax in this process is suggested.
Abstract: The insulin-like growth factor type 1 receptor (IGF-1R) controls aging and cellular stress, both of which play major roles in liver disease. Stimulation of insulin-like growth factor signaling can generate cell death in vitro. Here, we tested whether IGF-1R contributes to stress insult in the liver. Cholestatic liver injury was induced by bile duct ligation in control and liver-specific IGF-1R knockout (LIGFREKO) mice. LIGFREKO mice displayed less bile duct ligation-induced hepatocyte damage than controls, while no differences in bile acid serum levels or better adaptation to cholestasis by efflux transporters were found. We therefore tested whether stress pathways contributed to this phenomenon; oxidative stress, ascertained by both malondialdehyde content and heme oxygenase-1 expression, was similar in knockout and control animals. However, together with a lower level of eukaryotic initiation factor-2 α phosphorylation, the endoplasmic reticulum stress protein CHOP and its downstream pro-apoptotic target Bax were induced to lesser extents in LIGFREKO mice than in controls. Expression levels of cytokeratin 19, transforming growth factor-β1, α-smooth muscle actin, and collagen α1(I) in LIGFREKO mice were all lower than in controls, indicating reduced ductular and fibrogenic responses and increased cholestasis tolerance in these mutants. This stress resistance phenotype was also evidenced by longer post-bile duct ligation survival in mutants than controls. These results indicate that IGF-1R contributes to cholestatic liver injury, and suggests the involvement of both CHOP and Bax in this process.

Journal ArticleDOI
TL;DR: It is proposed that these transcriptional factors regulate hGHR V2 expression by acting as downstream nuclear effectors, linking specific signaling cascades triggered by different growth factor-, development-, and nutrition- as well as stress-related stimuli.
Abstract: The V2 transcript is the major ubiquitously expressed human GH receptor (hGHR) mRNA in all tissues examined to date. In a previous investigation, we defined the V2 promoter as TATA-less and exhibiting many characteristics of a housekeeping gene promoter. We also demonstrated that its basal activity is determined by several different cis-regulatory regions within both the promoter and the V2 exon. In the present study, we used luciferase-reporter, site-directed mutagenesis, gel shift, chromatin immunoprecipitation, and quantitative RT-PCR assays to investigate the ability of certain transcription factors to regulate hGHR V2 transcription through these regions in mammalian cells, including human adipocytes. Ets1 was found to transactivate the V2 proximal promoter through specific Ets sites. Two CCAAT/enhancer-binding protein (C/EBP) family members [C/EBP-homologous protein (CHOP) and C/EBPbeta] enhanced V2 transcription via different pathways: indirectly, by association with a V2 exon region (CHOP), and directly, using a V2 proximal promoter noncanonical binding site (C/EBPbeta). The Notch signaling mediator, Hes1, potently suppressed V2 promoter activity through interaction with two Hes sites within the V2 exon. We propose that these transcriptional factors regulate hGHR V2 expression by acting as downstream nuclear effectors, linking specific signaling cascades (e.g. MAPK and Notch) triggered by different growth factor-, development-, and nutrition- as well as stress-related stimuli. Our data also suggest that these factors are likely to be important in the differentiation-induced increase in V2 mRNA expression in adipocytes, with Ets1 and CHOP functioning at the preadipocyte stage to prepare the cells for differentiation and increasing C/EBPs and decreasing Hes1 levels contributing during adipocyte maturation.

Journal ArticleDOI
TL;DR: This study concludes that CHOP 5'UTR-c.279T>C and +nt30C>T genotypes and haplotypes are not associated with tumors/cancer and pre-obesity and more studies are warranted to establish the role of CHOP variants in tumor/cancer predisposition and in overweight condition.
Abstract: Background Type 2 diabetes (T2D) is associated with obesity and has been shown recently to be associated with tumors/cancer. HNF1-beta and JAZF1 genes are associated with T2D and prostate cancer. We have previously shown that CHOP 5'UTR-c.279T>C and +nt30C>T haplotype variants contribute to T2D. CHOP deficiency causes obesity in mice, thus CHOP gene variants may contribute to human obesity. Furthermore, CHOP mediates apoptosis and is implicated in cancer pathogenesis. Hence, we aimed at identifying any potential association of CHOP 5'UTR-c.279T>C and +nt30C>T genotypes and corresponding haplotypes with overweight condition/pre-obesity and tumors/cancer in an Italian dataset.