scispace - formally typeset
Search or ask a question

Showing papers on "Transcription Factor CHOP published in 2014"


Journal ArticleDOI
18 Sep 2014-Immunity
TL;DR: The role of Chop is suggested in tumor-induced tolerance and the therapeutic potential of targeting Chop in MDSCs for cancer immunotherapy is suggested.

201 citations


Journal ArticleDOI
TL;DR: The results indicate that Chop plays a direct role in chondrocyte apoptosis and that Chop-mediated apoptosis contributes to the progression of cartilage degeneration in mice.

98 citations


Journal ArticleDOI
TL;DR: It is shown that bufalin inhibits glioma cell growth and induces interplay between apoptosis and autophagy through endoplasmic reticulum stress and will provide molecular bases for developing bufalin into a drug candidate for the treatment of maglinant gliomas.
Abstract: Malignant gliomas are common primary tumors of the central nervous system. The prognosis of patients with malignant glioma is poor in spite of current intensive therapy and thus novel therapeutic modalities are necessary. Bufalin is the major component of Chan-Su (a traditional Chinese medicine) extracts from the venom of Bufo gargarizan. In this study, we evaluated the growth inhibitory effect of bufalin on glioma cells and explored the underlying molecular mechanisms. Our results showed that bufalin inhibited the growth of glioma cells significantly. Mechanistic studies demonstrated that bufalin induced apoptosis through mitochondrial apoptotic pathway. In addition, bufalin was also found to induce ER stress-mediated apoptosis, which was supported by the up- regulation of ER stress markers, CHOP and GRP78, and augmented phosphorylation of PERK and eIF2α as well as cleavage of caspase-4. Downregulation of CHOP using siCHOP RNA attenuated bufalin-induced apoptosis, further confirming the role of ER stress response in mediating bufalin-induced apoptosis. Evidence of bufalin-induced autophagy included formation of the acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. Further experiments showed that the mechanism of bufalin-induced autophagy associated with ATP deleption involved an increase in the active form of AMPK, decreased phosphorylation levels of mTOR and its downstream targets 4EBP1 and p70S6K1. Furthermore, TUDC and silencing of eIF2α or CHOP partially blocked bufalin-induced accumulation of LC3-II, which indicated that ER stress preceded bufalin-induced autophagy and PERK/eIF2α/CHOP signaling pathway played a major part in the process. Blockage of autophagy increased expression of ER stress associated proteins and the ratio of apoptosis, indicating that autophagy played a cytoprotective role in bufalin induced ER stress and cell death. In conclusion, bufalin inhibits glioma cell growth and induces interplay between apoptosis and autophagy through endoplasmic reticulum stress. It will provide molecular bases for developing bufalin into a drug candidate for the treatment of maglinant glioma.

89 citations


Journal ArticleDOI
TL;DR: It is suggested that quercetin enhances apoptotic death of ovarian cancer cells to TRAIL through upregulation of CHOP‐induced DR5 expression following ROS mediated endoplasmic reticulum‐stress.
Abstract: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. We investigated whether quercetin, a flavonoid, can sensitize human ovarian cancer cells to TRAIL. Results indicate that quercetin sensitized cancer cells to TRAIL. The quercetin induced expression of death receptor DR5 but did not affect expression of DR4 in cancer cells. The induction of DR5 was mediated through activation of JNK and through upregulation of a transcription factor CCAAT enhancer-binding protein homologous protein (CHOP); as silencing of these signaling molecules abrogated the effect of quercetin. Upregulation of DR5 was mediated through the generation of reactive oxygen species (ROS), as ROS scavengers reduced the effect of quercetin on JNK activation, CHOP upregulation, DR induction, TRAIL sensitization, downregulated the expression of cell survival proteins and upregulated the proapoptotic proteins. Furthermore, quercetin enhances TRAIL mediated inhibition of tumor growth of human SKOV-3 xenograft was associated with induction of apoptosis, activation of caspase-3, CHOP and DR5. Overall, our data suggest that quercetin enhances apoptotic death of ovarian cancer cells to TRAIL through upregulation of CHOP-induced DR5 expression following ROS mediated endoplasmic reticulum-stress.

87 citations


Journal ArticleDOI
TL;DR: The results show that ASPP2 induces the expression of damage-regulated autophagy modulator (DRAM), another critical factor that cooperates with free Beclin-1 to induce autophagic apoptosis and open a new avenue for promotingAutophagy in treatments to cure hepatocellular carcinoma.
Abstract: Apoptosis-stimulating protein of p53-2 (ASPP2) induces apoptosis by promoting the expression of pro-apoptotic genes via binding to p53 or p73; however, the exact mechanisms by which ASPP2 induces apoptotic death in hepatoma cells are still unclear. Here, we show that the transient overexpression of ASPP2 induces autophagic apoptosis in hepatoma cells by promoting p53- or p73-independent C/EBP homologous protein (CHOP) expression. CHOP expression decreases the expression of Bcl-2; this change releases Beclin-1 from cytoplasmic Bcl-2-Beclin-1 complexes and allows it to initiate autophagy. However, transient overexpression of Beclin-1 can induce autophagy but not apoptosis. Our results show that ASPP2 induces the expression of damage-regulated autophagy modulator (DRAM), another critical factor that cooperates with free Beclin-1 to induce autophagic apoptosis. The effect of CHOP on the translocation and sequestration of Bcl-2 in the nucleus, which requires the binding of Bcl-2 to ASPP2, is also critical for ASPP2-induced autophagic apoptosis. Although the role of nuclear ASPP2–Bcl-2 complexes is still unclear, our results suggest that nuclear ASPP2 can prevent the translocation of the remaining Bcl-2 to the cytoplasm by binding to Bcl-2 in a CHOP-dependent manner, and this effect also contributes to Beclin-1-initiated autophagy. Thus, CHOP is critical for mediating ASPP2-induced autophagic apoptosis by decreasing Bcl-2 expression and maintaining nuclear ASPP2–Bcl-2 complexes. Our results, which define a mechanism whereby ASPP2 overexpression induces autophagic apoptosis, open a new avenue for promoting autophagy in treatments to cure hepatocellular carcinoma.

85 citations


Journal ArticleDOI
TL;DR: It is demonstrated that TG-induced ER stress directly regulated the expression and secretion of FGF21 in a dose- and time-dependent manner and via ATF- and CHOP-dependent transcriptional mechanism and posttranscriptional mechanism, respectively.
Abstract: Fibroblast growth factor 21 (FGF21) is an important endogenous regulator involved in the regulation of glucose and lipid metabolism. FGF21 expression is strongly induced in animal and human subjects with metabolic diseases, but little is known about the molecular mechanism. Endoplasmic reticulum (ER) stress plays an essential role in metabolic homeostasis and is observed in numerous pathological processes, including type 2 diabetes, overweight, nonalcoholic fatty liver disease (NAFLD). In this study, we investigate the correlation between the expression of FGF21 and ER stress. We demonstrated that TG-induced ER stress directly regulated the expression and secretion of FGF21 in a dose- and time-dependent manner. FGF21 is the target gene for activating transcription factor 4 (ATF4) and CCAAT enhancer binding protein homologous protein (CHOP). Suppression of CHOP impaired the transcriptional activation of FGF21 by TG-induced ER stress in CHOP−/− mouse primary hepatocytes (MPH), and overexpression of ATF4 and CHOP resulted in FGF21 promoter activation to initiate the transcriptional programme. In mRNA stability assay, we indicated that ER stress increased the half-life of mRNA of FGF21 significantly. In conclusion, FGF21 expression is regulated by ER stress via ATF- and CHOP-dependent transcriptional mechanism and posttranscriptional mechanism, respectively.

80 citations


Journal ArticleDOI
08 Jan 2014-PLOS ONE
TL;DR: Results indicate that 4-PBA acts as an ER stress inhibitor, to partially protect the kidney from TM-induced AKI through the repression of ER stress-induced CHOP expression.
Abstract: Different forms of acute kidney injury (AKI) have been associated with endoplasmic reticulum (ER) stress; these include AKI caused by acetaminophen, antibiotics, cisplatin, and radiocontrast. Tunicamycin (TM) is a nucleoside antibiotic known to induce ER stress and is a commonly used inducer of AKI. 4-phenylbutyrate (4-PBA) is an FDA approved substance used in children who suffer from urea cycle disorders. 4-PBA acts as an ER stress inhibitor by aiding in protein folding at the molecular level and preventing misfolded protein aggregation. The main objective of this study was to determine if 4-PBA could protect from AKI induced by ER stress, as typified by the TM-model, and what mechanism(s) of 4-PBA's action were responsible for protection. C57BL/6 mice were treated with saline, TM or TM plus 4-PBA. 4-PBA partially protected the anatomic segment most susceptible to damage, the outer medullary stripe, from TM-induced AKI. In vitro work showed that 4-PBA protected human proximal tubular cells from apoptosis and TM-induced CHOP expression, an ER stress inducible proapoptotic gene. Further, immunofluorescent staining in the animal model found similar protection by 4-PBA from CHOP nuclear translocation in the tubular epithelium of the medulla. This was accompanied by a reduction in apoptosis and GRP78 expression. CHOP−/− mice were protected from TM-induced AKI. The protective effects of 4-PBA extended to the ultrastructural integrity of proximal tubule cells in the outer medulla. When taken together, these results indicate that 4-PBA acts as an ER stress inhibitor, to partially protect the kidney from TM-induced AKI through the repression of ER stress-induced CHOP expression.

80 citations


Journal ArticleDOI
TL;DR: This article showed that H2S increased survival after experimental sepsis induced by cecal ligation and puncture (CLP) in mice and showed that CHOP-knockout mice showed diminished splenic caspase-3 activation and apoptosis, decreased cytokine production, and augmented bacterial clearance.
Abstract: Sepsis is a major cause of mortality, and dysregulation of the immune response plays a central role in this syndrome. H2S, a recently discovered gaso-transmitter, is endogenously generated by many cell types, regulating a number of physiologic processes and pathophysiologic conditions. We report that H2S increased survival after experimental sepsis induced by cecal ligation and puncture (CLP) in mice. Exogenous H2S decreased the systemic inflammatory response, reduced apoptosis in the spleen, and accelerated bacterial eradication. We found that C/EBP homologous protein 10 (CHOP), a mediator of the endoplasmic reticulum stress response, was elevated in several organs after CLP, and its expression was inhibited by H2S treatment. Using CHOP-knockout (KO) mice, we demonstrated for the first time, to our knowledge, that genetic deletion of Chop increased survival after LPS injection or CLP. CHOP-KO mice displayed diminished splenic caspase-3 activation and apoptosis, decreased cytokine production, and augmented bacterial clearance. Furthermore, septic CHOP-KO mice treated with H2S showed no additive survival benefit compared with septic CHOP-KO mice. Finally, we showed that H2S inhibited CHOP expression in macrophages by a mechanism involving Nrf2 activation. In conclusion, our findings show a protective effect of H2S treatment afforded, at least partially, by inhibition of CHOP expression. The data reveal a major negative role for the transcription factor CHOP in overall survival during sepsis and suggest a new target for clinical intervention, as well potential strategies for treatment.

64 citations


Journal ArticleDOI
TL;DR: It is suggested that Medicarpin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the upregulation of DR5 through activation of the ROS-JNK-CHOP pathway.
Abstract: Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent with cancer cell-selective cell death inducing effect. However, the major limitation in the usage of TRAIL as a chemotherapeutic agent is the development of TRAIL resistance in many cancer types including myeloid leukemia. In this study, we report for the first time that Medicarpin (Med), a naturally occurring phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis. Combination of Med and TRAIL induced significantly higher apoptosis compared with that of the individual treatments of either agent alone through activation of both the extrinsic and the intrinsic cell death pathways characterized by the activation of caspases 8, 9, 3, and 7. Med treatment downregulated antiapoptotic proteins (Survivin, Bcl2, Bcl-xL, XIAP, and c-FLIP), upregulated pro-apoptotic proteins (Bax, Cytochrome C, Smac/Diablo, Bid, truncated Bid (tBid), p-eIF2α, Bip, and CHOP (CCAAT-enhancer binding protein homologous protein)), induced G2/M cell-cycle arrest, and increased the expression of the functional TRAIL receptor DR5 through activation of the ROS-JNK-CHOP pathway. Gain and loss of function studies clearly indicated that DR5 expression was critical for Med-induced TRAIL sensitization. The Med-induced TRAIL sensitization did not involve the NFkB signaling pathway or redistribution of DR5 in lipid rafts. The concomitant treatment with Med and TRAIL showed robust apoptotic effects in primary myeloid leukemia cells but had no toxic effects in primary human peripheral blood mononuclear cells (PBMCs). In conclusion, our results suggest that Med sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the upregulation of DR5 through activation of the ROS-JNK-CHOP pathway.

60 citations


Journal ArticleDOI
10 Feb 2014-PLOS ONE
TL;DR: It is implicate that baicalin could protect cardiomyocytes from ER stress-induced apoptosis via CHOP/eNOS/NO pathway, and suggest the therapeutic values of baicalsin against ER stress
Abstract: Baicalin, the main active ingredient of the Scutellaria root, exerts anti-oxidant and anti-apoptotic effects in cardiovascular diseases However, the therapeutic mechanism of baicalin remains unknown Cultured neonatal rat cardiomyocytes were pre-treated with baicalin (0–50 µM) for 24 h, and subsequently treated with tunicamycin (100 ng/ml) Cell viability was detected by MTT assay, and cell damage was determined by LDH release and TUNEL assay The expression of CHOP, JNK, caspase-3, eNOS was analyzed by western blot NO was measured by DAF-FM staining As a result, treatment with baicalin significantly reduced apoptosis induced by ER stress inducer tunicamycin in cardiomyocytes Molecularly, baicalin ameliorated tunicamycin-induced ER stress by downregulation of CHOP In addition, baicalin inverted tunicamycin-induced decreases of eNOS mRNA and protein levels, phospho eNOS and NO production through CHOP pathway However, the protective effects of baicalin were significantly decreased in cardiomyocytes treated with L-NAME, which suppressed activation of nitric oxide synthase In conclusion, our results implicate that baicalin could protect cardiomyocytes from ER stress-induced apoptosis via CHOP/eNOS/NO pathway, and suggest the therapeutic values of baicalin against ER stress-associated cardiomyocyte apoptosis

58 citations


Journal ArticleDOI
TL;DR: Findings provide strong evidence suggesting an important role of ER stress and the UPR in CS-related oxidative injury of RPE cells and the modulation of the U PR signaling may provide a promising target for the treatment of AMD.
Abstract: Aims: Age-related macular degeneration (AMD), a major cause of legal blindness in the elderly, is associated with genetic and environmental risk factors, such as cigarette smoking. Recent evidence shows that cigarette smoke (CS) that contains high levels of potent oxidants preferably targets retinal pigment epithelium (RPE) leading to oxidative damage and apoptosis; however, the mechanisms are poorly understood. The present study aimed to investigate the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in CS-related RPE apoptosis. Results: ER stress and proapoptotic gene C/EBP homologous protein (CHOP) were induced in the RPE/choroid complex from mice exposed to CS for 2 weeks and in human RPE cells treated with hydroquinone, a potent oxidant found at high concentrations in CS. Suppressing ER stress or inhibiting CHOP activation by pharmacological chaperones or genetic approaches attenuated hydroquinone-induced RPE cell apoptosis. In contrast to enhanced CHOP activation, protein level of active X-box binding protein 1 (XBP1), a major regulator of the adaptive UPR, was reduced in hydroquinone-treated cells. Conditional knockout of XBP1 gene in the RPE resulted in caspase-12 activation, increased CHOP expression, and decreased antiapoptotic gene Bcl-2. Furthermore, XBP1-deficient RPE cells are more sensitive to oxidative damage induced by hydroquinone or NaIO3, a CS-unrelated chemical oxidant. Conversely, overexpressing XBP1 protected RPE cells and attenuated oxidative stress-induced RPE apoptosis. Innovation and Conclusion: These findings provide strong evidence suggesting an important role of ER stress and the UPR in CS-related oxidative injury of RPE cells. Thus, the modulation of the UPR signaling may provide a promising target for the treatment of AMD. Antioxid. Redox Signal. 20, 2091–2106.

Journal ArticleDOI
TL;DR: In this article, the authors used the well-established CCl4 hepatotoxicity model in mice to address the questions whether CCL4 induces ER-stress and, if so, whether the wellknown ER-stressing effector CHOP is responsible for CCl 4-induced apoptosis.
Abstract: Since xenobiotics enter the organism via the liver, hepatocytes must cope with numerous perturbations, including modifications of proteins leading to endoplasmic reticulum stress (ER-stress). This triggers a signaling pathway termed unfolded protein response (UPR) that aims to restore homeostasis or to eliminate disturbed hepatocytes by apoptosis. In the present study, we used the well-established CCl4 hepatotoxicity model in mice to address the questions whether CCl4 induces ER-stress and, if so, whether the well-known ER-stress effector CHOP is responsible for CCl4-induced apoptosis. For this purpose, we treated mice with a high dose of CCl4 injected i.p. and followed gene expression profile over time using Affymetrix gene array analysis. This time resolved gene expression analysis allowed the identification of gene clusters with overrepresented binding sites for the three most important ER-stress induced transcription factors, CHOP, XBP1 and ATF4. Such result was confirmed by the demonstration of CCl4-induced XBP1 splicing, upregulation of CHOP at mRNA and protein levels, and translocation of CHOP to the nucleus. Two observations indicated that CHOP may be responsible for CCl4-induced cell death: (1) Nuclear translocation of CHOP was exclusively observed in the pericentral fraction of hepatocytes that deteriorate in response to CCl4 and (2) CHOP-regulated genes with previously reported pro-apoptotic function such as GADD34, TRB3 and ERO1L were induced in the pericentral zone as well. Therefore, we compared CCl4 induced hepatotoxicity in CHOP knockout versus wild-type mice. Surprisingly, genetic depletion of CHOP did not afford protection against CCl4-induced damage as evidenced by serum GOT and GPT as well as quantification of dead tissue areas. The negative result was obtained at several time points (8, 24 and 72 h) and different CCl4 doses (1.6 and 0.132 g/kg). Overall, our results demonstrate that all branches of the UPR are activated in mouse liver upon CCl4 treatment. However, CHOP does not play a critical role in CCl4-induced cell death and cannot be considered as a biomarker strictly linked to hepatotoxicity. The role of alternative UPR effectors such as XBP1 remains to be investigated.

Journal ArticleDOI
TL;DR: Observations indicate that ADMA may induce GEnCs apoptosis and TGF-β expression by targeting the PERK-CHOP and IRE1-JNK pathway, and drugs such as QC targeting ER stress may hold great promise for the development of novel therapies against ADMA-induced renal fibrosis.
Abstract: Asymmetric dimethylarginine (ADMA) is considered an independent mortality and cardiovascular risk factor in chronic kidney disease (CKD) patients, and contributes to the development of renal fibrosis. Quercetin (QC), a natural component of foods, protects against renal injury. Here, we explored the possible mechanisms that are responsible for ADMA-induced renal fibrosis and the protective effect of QC. We found that ADMA treatment activated the endoplasmic reticulum (ER) stress sensor proteins phosphorylated protein kinase RNA-activated-like ER kinase (PERK) and inositol requiring-1α (IRE1), which correspondingly induced C/EBP homologous protein (CHOP) expression and phosphorylated c-Jun N-terminal kinase (JNK) phosphorylation in glomerular endothelial cells (GEnCs). Following this, ADMA promoted ER stress-induced apoptosis and resulted in transforming growth factor β (TGF-β) expression in GEnCs. SP600125, an inhibitor of JNK, and CHOP siRNA protected against ADMA-induced cell apoptosis and TGF-β expression. QC prevented ADMA-induced PERK and IRE1 apoptotic ER stress pathway activation. Also, ADMA-induced GEnCs apoptosis and TGF-β expression was reduced by QC. Overexpression of CHOP blocked QC-mediated protection from apoptosis in ER stressed cells. Overall, these observations indicate that ADMA may induce GEnCs apoptosis and TGF-β expression by targeting the PERK-CHOP and IRE1-JNK pathway. In addition, drugs such as QC targeting ER stress may hold great promise for the development of novel therapies against ADMA-induced renal fibrosis.

Journal ArticleDOI
TL;DR: Findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane, which leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemIA.

Journal ArticleDOI
TL;DR: It is shown that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells.
Abstract: // Annat Raiter 1, * , Rinat Yerushalmi 2, * , Britta Hardy 1 1 Felsenstein Medical Research Center, Tel Aviv University School of Medicine, Rabin Medical Center, Petach Tikva, 49100, Israel 2 Oncology Institute, Rabin Medical Center, Petach Tikva, 49100, Israel * These authors contributed equally to this work Correspondence to: Britta Hardy, e-mail: bhardy@post.tau.ac.il Keywords: triple negative breast cancer cells, drug induced cell surface GRP78, apoptosis Received: July 16, 2014 Accepted: October 05, 2014 Published: October 24, 2014 ABSTRACT Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies.

Journal ArticleDOI
15 Jan 2014-PLOS ONE
TL;DR: It is found that miR-24 negatively regulates mouse primary cadiomyocyte cell death through functioning in the intrinsic apoptotic pathways in ER-mediated intrinsic pathway and in mitochondria–involved intrinsic pathway.
Abstract: Numerous cardiac diseases, including myocardial infarction (MI) and chronic heart failure, have been associated with cardiomyocyte apoptosis. Promoting cell survival by inhibiting apoptosis is one of the effective strategies to attenuate cardiac dysfunction caused by cardiomyocyte loss. miR-24 has been shown as an anti-apoptotic microRNA in various animal models. In vivo delivery of miR-24 into a mouse MI model suppressed cardiac cell death, attenuated infarct size, and rescued cardiac dysfunction. However, the molecular pathway by which miR-24 inhibits cardiomyocyte apoptosis is not known. Here we found that miR-24 negatively regulates mouse primary cadiomyocyte cell death through functioning in the intrinsic apoptotic pathways. In ER-mediated intrinsic pathway, miR-24 genetically interacts with the CEBP homologous gene CHOP as knocking down of CHOP partially attenuated the induced apoptosis by miR-24 inhibition. In mitochondria–involved intrinsic pathway, miR-24 inhibits the initiation of apoptosis through suppression of Cytochrome C release and Bax translocation from cytosol to mitochondria. These results provide mechanistic insights into the miR-24 mediated anti-apoptotic effects in murine cardiomyocytes.

Journal ArticleDOI
11 Feb 2014-PLOS ONE
TL;DR: In the presence of the RhoP23H transgene, the rate of decline in retinal sensitivity is similar in Chop or Ask1 ablated and wild-type retinas, suggesting that these proteins do not play a major role during the acute phase of photoreceptor loss in GHL+ mice.
Abstract: The P23H mutation in rhodopsin (RhoP23H) is a prevalent cause of autosomal dominant retinitis pigmentosa. We examined the role of the ER stress proteins, Chop and Ask1, in regulating the death of rod photoreceptors in a mouse line harboring the RhoP23H rhodopsin transgene (GHL+). We used knockout mice models to determine whether Chop and Ask1 regulate rod survival or retinal degeneration. Electrophysiological recordings showed similar retinal responses and sensitivities for GHL+, GHL+/Chop−/− and GHL+/Ask1−/− animals between 4–28 weeks, by which time all three mouse lines exhibited severe loss of retinal function. Histologically, ablation of Chop and Ask1 did not rescue photoreceptor loss in young animals. However, in older mice, a regional protective effect was observed in the central retina of GHL+/Chop−/− and GHL+/Ask1−/−, a region that was severely degenerated in GHL+ mice. Our results show that in the presence of the RhoP23H transgene, the rate of decline in retinal sensitivity is similar in Chop or Ask1 ablated and wild-type retinas, suggesting that these proteins do not play a major role during the acute phase of photoreceptor loss in GHL+ mice. Instead they may be involved in regulating secondary pathological responses such as inflammation that are upregulated during later stages of disease progression.

Journal ArticleDOI
TL;DR: Valproate may protect INS-1 β-cells from palmitate-induced apoptosis and ER stress via GSK-3β inhibition, independent of ATF4/CHOP pathway, and may be a more promising therapeutic target for T2D.
Abstract: Reduction of pancreatic β-cells mass, major secondary to increased β-cells apoptosis, is increasingly recognized as one of the main contributing factors to the pathogenesis of type 2 diabetes (T2D), and saturated free fatty acid palmitate has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting β-cells apoptosis. Recent literature suggests that valproate, a diffusely prescribed drug in the treatment of epilepsy and bipolar disorder, can inhibit glycogen synthase kinase-3β (GSK-3β) activity and has cytoprotective effects in neuronal cells and HepG2 cells. Thus, we hypothesized that valproate may protect INS-1 β-cells from palmitate-induced apoptosis via inhibiting GSK-3β. Valproate pretreatment remarkable prevented palmitate-mediated cytotoxicity and apoptosis (lipotoxicity) as well as ER distension. Furthermore, palmitate triggered ER stress as evidenced by increased mRNA levels of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) in a time-dependent fashion. However, valproate not only reduced the mRNA and protein expression of CHOP but also inhibited GSK-3β and caspase-3 activity induced by palmitate, whereas, the mRNA expression of ATF4 was not affected. Interestingly, TDZD-8, a specific GSK-3β inhibitor, also showed the similar effect on lipotoxicity and ER stress as valproate in INS-1 cells. Finally, compared with CHOP knockdown, valproate displayed better cytoprotection against palmitate. Valproate may protect β-cells from palmitate-induced apoptosis and ER stress via GSK-3β inhibition, independent of ATF4/CHOP pathway. Besides, GSK-3β, rather than CHOP, may be a more promising therapeutic target for T2D.

Journal ArticleDOI
14 Oct 2014-PLOS ONE
TL;DR: The results suggest that palmitate-induced apoptosis requires maximal expression of CHOP which is achieved via the downregulation of its repressive microRNA, miR-615-3p.
Abstract: Lipoapoptosis occurring due to an excess of saturated free fatty acids such as palmitate is a key pathogenic event in the initiation of nonalcoholic fatty liver disease. Palmitate loading of cells activates the endoplasmic reticulum stress response, including induction of the proapoptotic transcription factor C/EBP homologous protein (CHOP). Furthermore, the loss of microRNAs is implicated in regulating apoptosis under conditions of endoplasmic reticulum (ER) stress. The aim of this study was to identify specific microRNAs regulating CHOP expression during palmitate-induced ER stress. Five microRNAs were repressed under palmitate-induced endoplasmic reticulum stress conditions in hepatocyte cell lines (miR-92b-3p, miR-328-3p, miR-484, miR-574-5p, and miR-615-3p). We identified miR-615-3p as a candidate microRNA which was repressed by palmitate treatment and regulated CHOP protein expression, by RNA sequencing and in silico analyses, respectively. There is a single miR-615-3p binding site in the 3'untranslated region (UTR) of the Chop transcript. We characterized this as a functional binding site using a reporter gene-based assay. Augmentation of miR-615-3p levels, using a precursor molecule, repressed CHOP expression; and under these conditions palmitate- or tunicamycin-induced cell death were significantly reduced. Our results suggest that palmitate-induced apoptosis requires maximal expression of CHOP which is achieved via the downregulation of its repressive microRNA, miR-615-3p. We speculate that enhancement of miR-615-3p levels may be of therapeutic benefit by inhibiting palmitate-induced hepatocyte lipoapoptosis.

Journal ArticleDOI
TL;DR: It is shown for the first time that CypB is associated with p300 E4 ligase, induces ubiquitination and regulates the proteasomal turnover of CHOP, one of the well-known pro-apoptotic molecules under hypoxia.
Abstract: The regulation of CCAAT/enhancer-binding protein-homologous protein (CHOP), an endoplasmic reticulum (ER) stress-response factor, is key to cellular survival. Hypoxia is a physiologically important stress that induces cell death in the context of the ER, especially in solid tumors. Although our previous studies have suggested that Cyclophilin B (CypB), a molecular chaperone, has a role in ER stress, currently, there is no direct information supporting its mechanism under hypoxia. Here, we demonstrate for the first time that CypB is associated with p300 E4 ligase, induces ubiquitination and regulates the proteasomal turnover of CHOP, one of the well-known pro-apoptotic molecules under hypoxia. Our findings show that CypB physically interacts with the N-terminal α-helix domain of CHOP under hypoxia and cooperates with p300 to modulate the ubiquitination of CHOP. We also show that CypB is transcriptionally induced through ATF6 under hypoxia. Collectively, these findings demonstrate that CypB prevents hypoxia-induced cell death through modulation of ubiquitin-mediated CHOP protein degradation, suggesting that CypB may have an important role in the tight regulation of CHOP under hypoxia.

Journal ArticleDOI
18 Feb 2014-PLOS ONE
TL;DR: Data demonstrate that CHOP-mediated apoptosis is an early event in the pathobiology of PSACH and suggest that the lack of CHOP, in conjunction with a COMP mutation, may lead to aggravation of the skeletal phenotype via a potentially synergistic effect on endochondral ossification.
Abstract: Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by mutations in cartilage oligomeric matrix protein (COMP) and characterised by short limbed dwarfism and early onset osteoarthritis. Mouse models of PSACH show variable retention of mutant COMP in the ER of chondrocytes, however, in each case a different stress pathway is activated and the underlying disease mechanisms remain largely unknown. T585M COMP mutant mice are a model of moderate PSACH and demonstrate a mild ER stress response. Although mutant COMP is not retained in significant quantities within the ER of chondrocytes, both BiP and the pro-apoptotic ER stress-related transcription factor CHOP are mildly elevated, whilst bcl-2 levels are decreased, resulting in increased and spatially dysregulated chondrocyte apoptosis. To determine whether the abnormal chondrocyte apoptosis observed in the growth plate of mutant mice is CHOP-mediated, we bred T585M COMP mutant mice with CHOP-null mice to homozygosity, and analysed the resulting phenotype. Although abnormal apoptosis was alleviated in the resting zone following CHOP deletion, the mutant growth plates were generally more disorganised. Furthermore, the bone lengths of COMP mutant CHOP null mice were significantly shorter at 9 weeks of age when compared to the COMP mutant mice, including a significant difference in the skull length. Overall, these data demonstrate that CHOP-mediated apoptosis is an early event in the pathobiology of PSACH and suggest that the lack of CHOP, in conjunction with a COMP mutation, may lead to aggravation of the skeletal phenotype via a potentially synergistic effect on endochondral ossification.

Journal ArticleDOI
TL;DR: Liraglutide is capable of protecting DCM and blocking CHOP-mediated ER stress by inhibiting the IRE-α UPR pathway.
Abstract: Clinically, diabetes mellitus is closely associated with and induces certain cardiovascular diseases. The aim of this study was to investigate endoplasmic reticulum (ER) stress-associated apoptosis of diabetic cardiomyopathy (DCM), and explore the protective mechanism of liraglutide. The DCM model was established with a high-fat diet and streptozotocin (STZ). Cardiac function was detected by echocardiogram examination and hematoxylin-eosin staining. ER stress unfolded protein response (UPR) hallmarks [inositol-requiring enzyme-α (IRE-α), p-Perk and ATF6] and transcription factors were detected with western blotting. Apoptosis inducers CHOP, c-Jun amino terminal kinase (JNK) and casapse-12 were also examined with western blotting. The results indicated that liraglutide is capable of improving cardiac function in DCM rats (P<0.05). IRE-α expression was significantly increased in the DCM group compared with the control group (P<0.05), and liraglutide is capable of decreasing IRE-α expression. X-box transcription factor-1 (XBP-1) was significantly spliced in the model group, and downregulated in the liraglutide-treated group. CHOP protein was upregulated in the DCM group, but inactivated by liraglutide treatment. In conclusion, liraglutide is capable of protecting DCM and blocking CHOP-mediated ER stress by inhibiting the IRE-α UPR pathway.

Journal ArticleDOI
TL;DR: It is shown that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate, pointing to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes.
Abstract: Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes.

Journal ArticleDOI
TL;DR: It is concluded that regulation of CHOP by thrombin directs AECs toward apoptosis while promoting survival of lung fibroblasts, ultimately contributing to the persistent fibroproliferation seen in SSc-ILD and other fibrosing lung diseases.
Abstract: Apoptosis of alveolar epithelial cells (AECs) and survival of lung fibroblasts are critical events in the pathogenesis of pulmonary fibrosis; however, mechanisms underlying the apoptosis of AECs and the resistance of lung fibroblasts to apoptosis remain obscure. Herein, we demonstrate that the fate of these two cell types depends on the expression of CCAAT enhancer–binding homologous protein (CHOP). We observed that thrombin, which is overexpressed in scleroderma (SSc; systemic sclerosis) and other interstitial lung diseases (ILDs), increases the expression of CHOP in primary AECs and in A549 cells via an Ets1-dependent pathway. In addition, thrombin activates caspase-3 in AECs and induces apoptosis of these cells in a CHOP-dependent manner. In contrast, thrombin decreases endoplasmic reticulum stress–induced CHOP in lung fibroblasts through Myc-dependent mechanisms and protects such cells from apoptosis. Furthermore, when lung fibroblasts are transfected with recombinant CHOP, they then undergo apoptosis...

Journal Article
TL;DR: It is considered that administration of metformin with chemotherapeutic agents could be an effective method in treatment of breast cancer through mechanisms such as reduced resistance to chemotherapy and increased cytotoxic activity.
Abstract: BACKGROUND: 1,1-dimethyl- biguanide hydrochloride (biguanide metformin) is a hypoglycemic agent that is widely used in the treatment ofType 2 diabetes. Use of met- forminwasfoundtobeassociatedwiththelower riskofcancer.Itissuggestedthatmetforminhas an anticancer and antiproliferative effect and af- fects the apoptosis by activating the AMPK and inhibiting the mammalian target of rapamycin (mTOR).Althoughtheeffectsofmetformintreat- mentofvarioustypesofcancersaredefinedwith many mechanisms, the literature provides only sufficient information about how it affects the SGK-1, Par-4 and Cav-1 mRNA expressions and the impact of this effect on cytotoxicity.The breastcancerisgloballyoneofthemostimpor- tant causes of cancer-related mortality for women.We, therefore investigated the possible effectsofmetmorfinonproliferation,cytotoxicity and some unfolded protein response (UPR) genesinthebreastcancercells(MCF-7). MATERIALS AND METHODS:Weadministrat- ed 0.31 mM, 2.5 mM and 10 mM of metformin aloneandincombinationwith2-DGtotheMCF- 7cellsandmonitoredthecellviabilityandprolif- erationwithreal-timecellanalyzersystemfor48 hours.We also measured CHOP, Cav-1, HO-1, SGK-1andPar-4genesmRNAexpressionlevels usingRealTime-PolymeraseChainReaction(RT- PCR).We considered the GAPDH gene as refer- ence gene and the control groups as calibrator. We performed an analysis for relative gene ex - pressionsofthestudygroups. RESULTS: Metformin caused transcriptional regulation of UPR and tumor-related genes in MCF-7 cells and inhibited the proliferation de - pendingonthedose,resultingincytotoxiceffect. CONCLUSIONS: We consider that administra - tionofmetforminwithchemotherapeuticagents could be an effective method in treatment of breast cancer through mechanisms such as re - duced resistance to chemotherapy and in - creasedcytotoxicactivity.

Journal ArticleDOI
TL;DR: The findings indicate that regulated expression of Chop during obesity is critical for adaptation to chronic caloric excess and maintenance of energy homeostasis via integration of metabolic and immune systems.

Journal ArticleDOI
18 Sep 2014-Immunity
TL;DR: It is shown that in tumors, the suppressive activity of MDSCs is regulated by transcription factor Chop, which is one of the major negative regulators of immune responses.

Journal ArticleDOI
TL;DR: Both mono-alleic and bi-allelic ENPP1 deficiency promote dysregulated VSMC function, with robust lesion CHOP expression and enhanced neointimal hyperplasia after injury in vivo, but marked post-injury calcification limited to Enpp1-/- mice.

Book ChapterDOI
TL;DR: Reprogramming of the UPR via modulation of pro-apoptotic caspase-7 and CHOP proteins could be an effective approach to slow down the rate of retinal degeneration in ADRP mice by ERG, SD-OCT, histology and western blot analysis.
Abstract: The goal of this study is to validate whether reprogramming of the UPR via modulation of pro-apoptotic caspase-7 and CHOP proteins could be an effective approach to slow down the rate of retinal degeneration in ADRP mice. In order to pursue our goal we created the T17M RHO CASP7 and T17M RHO CHOP mice to study the impact of the CASP7 or CHOP ablations in T17M RHO retina by ERG, SD-OCT, histology and western blot analysis. The scotopic ERG demonstrated that the ablation of the CASP7 in T17M RHO retina leads to significant preservation of the function of photoreceptors compared to control. Surprisingly, the ablation of pro-apoptotic CHOP protein in T17M RHO mice led to a more severe form of retinal degeneration. Results of the SD-OCT and histology were in agreement with the ERG data. The further analysis demonstrated that the preservation of the structure and function or the acceleration of the onset of the T17M RHO photoreceptor degeneration occurred via reprogramming of the UPR. In addition, the CASP7 ablation leads to the inhibition of cJUN mediated apoptosis, while the ablation of CHOP induces an increase in the HDAC. Thus, manipulation with the UPR requires careful examination in order to achieve a therapeutic effect.

Journal ArticleDOI
TL;DR: It is demonstrated that CAVI-b expression, which is increased through CHOP-signaling in response to unfolded protein stress, is also increased by oxygen-glucose deprivation (OGD), suggesting that CAvi-b comprises a necessary component of a larger adaptive signaling pathway downstream of CHOP.