scispace - formally typeset
Search or ask a question
Topic

Transcription Factor CHOP

About: Transcription Factor CHOP is a research topic. Over the lifetime, 443 publications have been published within this topic receiving 46408 citations.


Papers
More filters
Journal ArticleDOI
01 Nov 2008-Diabetes
TL;DR: While both cytokines and palmitate can induce ER stress, the results suggest that, in contrast to lipoapoptosis, the PERK-ATF4-CHOP ER stress–signaling pathway is not necessary for cytokine-induced β-cell death.
Abstract: OBJECTIVE—Cytokines contribute to β-cell destruction in type 1 diabetes. Endoplasmic reticulum (ER) stress–mediated apoptosis has been proposed as a mechanism for β-cell death. We tested whether ER stress was necessary for cytokine-induced β-cell death and also whether ER stress gene activation was present in β-cells of the NOD mouse model of type 1 diabetes. RESEARCH DESIGN AND METHODS—INS-1 β-cells or rat islets were treated with the chemical chaperone phenyl butyric acid (PBA) and exposed or not to interleukin (IL)-1β and γ-interferon (IFN-γ). Small interfering RNA (siRNA) was used to silence C/EBP homologous protein (CHOP) expression in INS-1 β-cells. Additionally, the role of ER stress in lipid-induced cell death was assessed. RESULTS—Cytokines and palmitate triggered ER stress in β-cells as evidenced by increased phosphorylation of PKR-like ER kinase (PERK), eukaryotic initiation factor (EIF)2α, and Jun NH2-terminal kinase (JNK) and increased expression of activating transcription factor (ATF)4 and CHOP. PBA treatment attenuated ER stress, but JNK phosphorylation was reduced only in response to palmitate, not in response to cytokines. PBA had no effect on cytokine-induced cell death but was associated with protection against palmitate-induced cell death. Similarly, siRNA-mediated reduction in CHOP expression protected against palmitate- but not against cytokine-induced cell death. In NOD islets, mRNA levels of several ER stress genes were reduced (ATF4, BiP [binding protein], GRP94 [glucose regulated protein 94], p58, and XBP-1 [X-box binding protein 1] splicing) or unchanged (CHOP and Edem1 [ER degradation enhancer, mannosidase α–like 1]). CONCLUSIONS—While both cytokines and palmitate can induce ER stress, our results suggest that, in contrast to lipoapoptosis, the PERK-ATF4-CHOP ER stress–signaling pathway is not necessary for cytokine-induced β-cell death.

134 citations

Journal ArticleDOI
TL;DR: It is demonstrated that proteasome inhibition induces ER-initiated cardiomyocyte death via CHOP-dependent pathways without compensatory up-regulation of ER chaperones.
Abstract: Aims Proteasome inhibitors are a novel class of anticancer agents that induce tumour cell death via endoplasmic reticulum (ER) stress. Since ER stress is involved in the development of heart failure, we investigated the role of ER-initiated cardiomyocyte death by proteasome inhibition. Methods and results Rat neonatal cardiomyocytes were used in this study. Proteasome activity was assayed using proteasome peptidase substrates. Cell viability and apoptosis were measured by 3-(4,5dimethylthiazol-2-yl)-2,5-diphenol tetrazolium bromide and flow cytometry, respectively. Western blot analysis, real-time polymerase chain reaction (PCR) and reverse transcriptional PCR were used to detect the expression of protein and messenger ribonucleic acid (RNA). The location of overexpressed glucose-regulated protein (GRP) 78 was observed by confocal fluorescence microscopy. Proteasome inhibition induced cardiomyocyte death and activated ER stress-induced transcriptional factor ATF6, but not XBP1 (X-box binding protein 1), without up-regulating ER chaperones. ER-initiated apoptosis signalling, including cytosine-cytosine-adenine-adenine-thymine enhancer-binding protein (C/EBP) homologous protein (CHOP), c-Jun-N-terminal kinase (JNK), and caspase-12, was activated by proteasome inhibition. Short interference RNA targeting CHOP, but not the blockage of caspase-12 or JNK pathway, attenuated cardiomyocyte death. Overexpression of GRP78 suppressed both CHOP expression and cardiomyocyte death by proteasome inhibition. Conclusion These findings demonstrate that proteasome inhibition induces ER-initiated cardiomyocyte death via CHOP-dependent pathways without compensatory up-regulation of ER chaperones. Supplement and/or pharmacological induction of GRP78 can attenuate cardiac damage by proteasome inhibition.

133 citations

Journal ArticleDOI
TL;DR: C/EBP are expressed in a differentiation-associated manner in the skin, and may play an important role in regulating one or more aspects of the epidermal differentiation program.

133 citations

Journal ArticleDOI
TL;DR: The data suggest that genetic and cellular events involving C/EBPβ and CHOP are important for tumor invasion and that these events do not appear to be related to the pathological grade of the tumor.
Abstract: Regulation of cell differentiation is most often impaired in malignant tumors and may represent a key mechanism for the progression of the disease. CCAAT-enhancer binding protein (C/EBP) is a family of transcription factors involved in the regulation of embryonic gut development in rodents, which has also been detected in various malignancies, e.g., liposarcomas and breast and ovarian epithelial tumors. We studied the relationship between C/EBP and tumor histology (Duke's invasive stage and pathological grade) in colorectal cancer. Immunoblotting techniques were used on microdissected fresh frozen tumor specimens, and expression of C/EBPalpha, C/EBPbeta and C/EBPzeta (CHOP) was analyzed in addition to that of the cell-cycle regulator p53 and the proliferation marker PCNA. Expression of C/EBPbeta (LAP isoforms) was markedly increased in all tumors compared with normal colon mucosa. Although the inter-patient variability was large, we found that LIP, the isoform of C/EBPbeta known to inhibit transcription, was expressed at higher levels in Duke's stage B tumors compared with Duke's stage A, whereas Duke's C tumors had the lowest LIP expression. A similar relationship was seen for CHOP. The cell-cycle regulator gene p53 was the only factor that clearly correlated with pathological grade: a decrease in p53 expression was demonstrated. Our data suggest that genetic and cellular events involving C/EBPbeta and CHOP are important for tumor invasion and that these events do not appear to be related to the pathological grade of the tumor.

122 citations

Journal ArticleDOI
TL;DR: It is concluded that CDDO-Me triggers ER stress, leading to JNK-dependent, CHOP-mediated DR5 up-regulation and apoptosis, and ER stress seems to be important for CDDO -Me-induced JNK activation,CHOP and DR5up-regulation, and apoptotic.
Abstract: The synthetic triterpenoid methyl-2-cyano-3,12-dioxoolean-1,9-dien-28-oate (CDDO-Me) is in phase I clinical trials as a novel cancer therapeutic agent. We previously showed that CDDO-Me induces c-Jun NH(2)-terminal kinase (JNK)-dependent death receptor 5 (DR5) expression and augments death receptor-induced apoptosis. The current study focused on addressing how CDDO-Me induces JNK-dependent DR5 expression. Analysis of DR5 promoter regions defines that the CCAAT/enhancer binding protein homologous protein (CHOP) binding site is responsible for CDDO-Me-induced transactivation of the DR5 gene. Consistently, CDDO-Me induced DR5 expression and parallel CHOP up-regulation. Blockade of CHOP up-regulation also abrogated CDDO-Me-induced DR5 expression. These results indicate that CDDO-Me induces CHOP-dependent DR5 up-regulation. Moreover, the JNK inhibitor SP600125 abrogated CHOP induction by CDDO-Me, suggesting a JNK-dependent CHOP up-regulation by CDDO-Me as well. Importantly, knockdown of CHOP attenuated CDDO-Me-induced apoptosis, showing that CHOP induction is involved in CDDO-Me-induced apoptosis. Additionally, CDDO-Me increased the levels of Bip, phosphorylated eukaryotic translation initiation factor 2alpha, inositol requiring kinase 1alpha, and activating transcription factor 4, all of which are featured changes during endoplasmic reticulum (ER) stress. Furthermore, salubrinal, an inhibitor of ER stress-induced apoptosis, inhibited JNK activation and up-regulation of CHOP and DR5 by CDDO-Me and protected cells from CDDO-Me-induced apoptosis. Thus, ER stress seems to be important for CDDO-Me-induced JNK activation, CHOP and DR5 up-regulation, and apoptosis. Collectively, we conclude that CDDO-Me triggers ER stress, leading to JNK-dependent, CHOP-mediated DR5 up-regulation and apoptosis.

121 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
86% related
Transcription factor
82.8K papers, 5.4M citations
85% related
Protein kinase A
68.4K papers, 3.9M citations
85% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Cellular differentiation
90.9K papers, 6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
20203
20193
201811
201719
201648