scispace - formally typeset
Search or ask a question
Topic

Transcription Factor CHOP

About: Transcription Factor CHOP is a research topic. Over the lifetime, 443 publications have been published within this topic receiving 46408 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The expression of GADD genes contributes to growth arrest and/or protection from metabolic damage during GLN-poor conditions and was examined in human breast cell lines subjected to acute glutamine (GLN) deprivation.

77 citations

Journal ArticleDOI
20 Mar 2013-PLOS ONE
TL;DR: P pivotal roles for Ca2+/calpain-2 pathways in modulating FFA-induced β-TC3 cell ERS and apoptosis are revealed.
Abstract: Dysfunction of β-cells is a major characteristic in the pathogenesis of type 2 diabetes mellitus (T2DM). The combination of obesity and T2DM is associated with elevated plasma free fatty acids (FFAs). However, molecular mechanisms linking FFAs to β-cell dysfunction remain poorly understood. In the present study, we identified that the major endoplasmic reticulum stress (ERS) marker, Grp78 and ERS-induced apoptotic factor, CHOP, were time-dependently increased by exposure of β-TC3 cells to FFA. The expression of ATF6 and the phosphorylation levels of PERK and IRE1, which trigger ERS signaling, markedly increased after FFA treatments. FFA treatments increased cell apoptosis by inducing ERS in β-TC3 cells. We also found that FFA-induced ERS was mediated by the store-operated Ca2+ entry through promoting the association of STIM1 and Orai1. Moreover, calpain-2 was required for FFA-induced expression of CHOP and activation of caspase-12 and caspase-3, thus promoting cell apoptosis in β-TC3 cells. Together, these results reveal pivotal roles for Ca2+/calpain-2 pathways in modulating FFA-induced β-TC3 cell ERS and apoptosis.

76 citations

Journal ArticleDOI
TL;DR: This study demonstrates that the induction of eIF2α-CHOP-BCL-2/JNK and IRE1α-XBP1/J NK signaling cascades promote apoptosis and cytokines secretion, and these signaling cascading support NDV proliferation.
Abstract: Newcastle disease virus (NDV) causes severe infectious disease in poultry and selectively kills tumor cells, by inducing apoptosis and cytokines secretion. In this report, we study the mechanisms underlying NDV-induced apoptosis by investigating the unfolded protein response (UPR). We found that NDV infection activated all three branches of the UPR signaling (PERK-eIF2α, ATF6, and IRE1α) and triggered apoptosis, in avian cells (DF-1 and CEF) and in various human cancer cell types (HeLa, Cal27, HN13, A549, H1299, Huh7, and HepG2). Interestingly, the suppression of either apoptosis or UPR led to impaired NDV proliferation. Meanwhile, the inhibition of UPR by 4-PBA protected cells from NDV-induced apoptosis. Further study revealed that activation of PERK-eIF2α induced the expression of transcription factor CHOP, which subsequently promoted apoptosis by downregulating BCL-2/MCL-1, promoting JNK signaling and suppressing AKT signaling. In parallel, IRE1α mediated the splicing of XBP1 mRNA and resulted in the translation and nuclear translocation of XBP1s, thereby promoting the transcription of ER chaperones and components of ER-associated degradation (ERAD). Furthermore, IRE1α promoted apoptosis and cytokines secretion via the activation of JNK signaling. Knock down and overexpression studies showed that CHOP, IRE1α, XBP1, and JNK supported efficient virus proliferation. Our study demonstrates that the induction of eIF2α-CHOP-BCL-2/JNK and IRE1α-XBP1/JNK signaling cascades promote apoptosis and cytokines secretion, and these signaling cascades support NDV proliferation.

76 citations

Journal ArticleDOI
TL;DR: Ethanol rapidly caused oxidative stress in cultured neuronal cells; antioxidants blocked ethanol's potentiation of ER stress and cell death, suggesting that the ethanol‐promoted ER stress response is mediated by oxidative stress.
Abstract: One of the most devastating effects of ethanol exposure during development is the loss of neurons in selected brain areas The underlying cellular/molecular mechanisms remain unclear The endoplasmic reticulum (ER) is involved in posttranslational protein processing and transport The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress, which is characterized by translational attenuation, synthesis of ER chaperone proteins such as GRP78, and activation of transcription factors such as ATF4, ATF6, and CHOP Sustained ER stress ultimately leads to cell death ER stress response can be induced experimentally by treatment with tunicamycin and thapsigargin Using SH-SY5Y neuroblastoma cells and primary cerebellar granule neurons as in vitro models, we demonstrated that exposure to ethanol alone had little effect on the expression of markers for ER stress; however, ethanol drastically enhanced the expression of GRP78, CHOP, ATF4, ATF6, and phosphorylated PERK and elF2α when induced by tunicamycin and thapsigargin Consistently, ethanol promoted tunicamycin- and thapsigargin-induced cell death Ethanol rapidly caused oxidative stress in cultured neuronal cells; antioxidants blocked ethanol’s potentiation of ER stress and cell death, suggesting that the ethanol-promoted ER stress response is mediated by oxidative stress CHOP is a proapoptotic transcription factor We further demonstrated that CHOP played an important role in ethanol-promoted cell death Thus, the effect of ethanol may be mediated by the interaction between oxidative stress and ER stress

75 citations

Journal ArticleDOI
TL;DR: PCAF acts as a coactivator of ATF4 and is involved in the enhancement of CHOP transcription following amino acid starvation, and stimulates ATF4-driven transcription via its histone acetyltransferase domain.
Abstract: When an essential amino acid is limited, a signaling cascade is triggered that leads to increased translation of the ‘master regulator’, activating transcription factor 4 (ATF4), and resulting in the induction of specific target genes. Binding of ATF4 to the amino acid response element (AARE) is an essential step in the transcriptional activation of CHOP (a CCAAT/enhancer-binding protein-related gene) by amino acid deprivation. We set out to identify proteins that interact with ATF4 and that play a role in the transcriptional activation of CHOP. Using a tandem affinity purification (TAP) tag approach, we identified p300/CBP-associated factor (PCAF) as a novel interaction partner of ATF4 in leucine-starved cells. We show that the N-terminal region of ATF4 is required for a direct interaction with PCAF and demonstrate that PCAF is involved in the full transcriptional response of CHOP by amino acid starvation. Chromatin immunoprecipitation analysis revealed that PCAF is engaged on the CHOP AARE in response to amino acid starvation and that ATF4 is essential for its recruitment. We also show that PCAF stimulates ATF4-driven transcription via its histone acetyltransferase domain. Thus PCAF acts as a coactivator of ATF4 and is involved in the enhancement of CHOP transcription following amino acid starvation.

75 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
86% related
Transcription factor
82.8K papers, 5.4M citations
85% related
Protein kinase A
68.4K papers, 3.9M citations
85% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Cellular differentiation
90.9K papers, 6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
20203
20193
201811
201719
201648