scispace - formally typeset
Search or ask a question
Topic

Transcription Factor CHOP

About: Transcription Factor CHOP is a research topic. Over the lifetime, 443 publications have been published within this topic receiving 46408 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that CHOP also interacts with another non-C/EBP protein designated v-fos transformation effector (FTE) and FTE/S3a appears to be a bifunctional ribosomal protein that regulates CHOP and, hence, C/E BP function during erythropoiesis.

57 citations

Journal ArticleDOI
TL;DR: It is demonstrated that 10 ng/ml Stx2 induced DNA fragmentation in human brain microvascular endothelial cells (HBMEC), with cleavage activation of caspase-3, -6, -8, and -9, and that Stx 2-induced apoptosis is mediated by CHOP in HBMEC and involves activation of both the intrinsic and extrinsic pathways of apoptosis.
Abstract: Shiga toxin 1 (Stx1) and Stx2 produced by Escherichia coli O157 are known to be cytotoxic to Vero and HeLa cells by inhibiting protein synthesis and by inducing apoptosis. In the present study, we have demonstrated that 10 ng/ml Stx2 induced DNA fragmentation in human brain microvascular endothelial cells (HBMEC), with cleavage activation of caspase-3, -6, -8, and -9. A microarray approach used to search for apoptotic potential signals in response to Stx2 revealed that Stx2 treatment induced a marked upregulation of C/EBP homologous protein (CHOP)/growth arrest and DNA damage-inducible protein 153 (GADD153). Increased CHOP expression was dependent on enzymatically active Stx1. Knockdown of CHOP mRNA reduced the activation of caspase-3 and prevented apoptotic cell death. These results suggest that Stx2-induced apoptosis is mediated by CHOP in HBMEC and involves activation of both the intrinsic and extrinsic pathways of apoptosis.

57 citations

Journal ArticleDOI
TL;DR: These studies establish a system whereby a terminal or adaptive UPR can be alternatively triggered by physiologic stimuli, as well as identifying B cell receptor (BCR) signaling as an unexpected physiologic UPR trigger and demonstrating that in mature B cells, BCR stimulation induces a short lived UPR similar to the LPS-triggered nonclassical UPR.

56 citations

Journal ArticleDOI
TL;DR: Genomic analyses revealed that the breaks were located at the end of exon 14/beginning of intron 14 of FUS and in intron 1 of CHOP and that microdeletions had occurred in the close vicinity of the breakpoints.

56 citations

Journal ArticleDOI
08 Feb 2012-PLOS ONE
TL;DR: A novel function of C/EBPδ is identified as a modulatory transcription factor that inhibits the pro-apoptotic and pro-inflammatory gene networks activated by cytokines in pancreatic β-cells.
Abstract: In the course of Type 1 diabetes pro-inflammatory cytokines (e.g., IL-1β, IFN-γ and TNF-α) produced by islet-infiltrating immune cells modify expression of key gene networks in β-cells, leading to local inflammation and β-cell apoptosis. Most known cytokine-induced transcription factors have pro-apoptotic effects, and little is known regarding "protective" transcription factors. To this end, we presently evaluated the role of the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) on β-cell apoptosis and production of inflammatory mediators in the rat insulinoma INS-1E cells, in purified primary rat β-cells and in human islets. C/EBPδ is expressed and up-regulated in response to the cytokines IL-1β and IFN-γ in rat β-cells and human islets. Small interfering RNA-mediated C/EBPδ silencing exacerbated IL-1β+IFN-γ-induced caspase 9 and 3 cleavage and apoptosis in these cells. C/EBPδ deficiency increased the up-regulation of the transcription factor CHOP in response to cytokines, enhancing expression of the pro-apoptotic Bcl-2 family member BIM. Interfering with C/EBPδ and CHOP or C/EBPδ and BIM in double knockdown approaches abrogated the exacerbating effects of C/EBPδ deficiency on cytokine-induced β-cell apoptosis, while C/EBPδ overexpression inhibited BIM expression and partially protected β-cells against IL-1β+IFN-γ-induced apoptosis. Furthermore, C/EBPδ silencing boosted cytokine-induced production of the chemokines CXCL1, 9, 10 and CCL20 in β-cells by hampering IRF-1 up-regulation and increasing STAT1 activation in response to cytokines. These observations identify a novel function of C/EBPδ as a modulatory transcription factor that inhibits the pro-apoptotic and pro-inflammatory gene networks activated by cytokines in pancreatic β-cells.

55 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
86% related
Transcription factor
82.8K papers, 5.4M citations
85% related
Protein kinase A
68.4K papers, 3.9M citations
85% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Cellular differentiation
90.9K papers, 6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
20203
20193
201811
201719
201648