scispace - formally typeset
Search or ask a question
Topic

Transcription Factor CHOP

About: Transcription Factor CHOP is a research topic. Over the lifetime, 443 publications have been published within this topic receiving 46408 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded thatDDIT3 binds CDK2 and that many of the observed biological effects of DDIT3 may involve interaction withCDK2.
Abstract: The DDIT3 gene encodes a transcription factor belonging to the CCAAT/enhancer binding protein (C/EBP) family. It is normally expressed at very low levels but is activated by cellular stress conditions and induces G1 arrest and, in some cell types, apoptosis. DDIT3 is found as a part of the fusion oncogene FUS-DDIT3 that is causal for the development of myxoid/round-cell liposarcomas (MLS/RCLS). In the present study, we searched for putative interaction partners of DDIT3 and the oncogenic FUS-DDIT3 among G1 cyclins and cyclin-dependent kinases. We found that FUS-DDIT3 and the normal DDIT3 bind CDK2. In addition, CDK2 showed an increased affinity for cytoskeletal proteins in cells expressing FUS-DDIT3 and DDIT3. We conclude that DDIT3 binds CDK2 and that many of the observed biological effects of DDIT3 may involve interaction with CDK2.

20 citations

Journal ArticleDOI
TL;DR: CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia) and treatment (hypothermia), and it is concluded that they are regulated independently.
Abstract: Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response, resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP) activation. In an in vitro and in vivo model of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplasmic reticulum oxidoreductin-α (Ero1-α), because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR) in rat hippocampi following global cerebral ischemia, and in hypoxic pheochromocytoma cells during normothermic (37 °C) and hypothermic (31 °C) conditions. As a result of ischemia, a significant increase in expression of CHOP and Ero1-α was observed after three, six and twelve hours of reperfusion following global ischemia. A stable increase in CHOP expression was observed throughout the time course (p < 0.01, p < 0.0001), whereas Ero1-α expression peaked at three to six hours (p < 0.0001). Induced hypothermia in hypoxia stressed PC12 cells resulted in a decreased expression of CHOP after three, six and twelve hours (p < 0.0001). On the contrary, the gene expression of Ero1-α increased as a result of hypothermia and peaked at twelve hours (p < 0.0001). Hypothermia attenuated the expression of CHOP, supporting that hypothermia suppress endoplasmic reticulum stress induced apoptosis in stroke. As hypothermia further induced up-regulation of Ero1-α, and since CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia) and treatment (hypothermia), we conclude that they are regulated independently.

20 citations

Journal ArticleDOI
TL;DR: The CHOP protein level was identified as a biomarker that could predict sensitivity to carfilzomib in CLL and induced ER stress culminating in activation of intrinsic and extrinsic caspase pathways.
Abstract: Purpose: Carfilzomib, while active in B-cell neoplasms displayed heterogeneous response in chronic lymphocytic leukemia (CLL) samples from patients and showed interpatient variability to carfilzomib-induced cell death. To understand this variability and predict patients that would respond to carfilzomib, we investigated the mechanism by which carfilzomib induces CLL cell death. Experimental Design: Using CLL patient samples and cell lines, complementary knockdown and knockout cells, and carfilzomib-resistant cell lines, we evaluated changes in intracellular networks to identify molecules responsible for carfilzomib9s cytotoxic activity. Carfilzomib-treated cells were immunoblotted for molecules involved in ubiquitin, apoptotic, and endoplasmic reticulum (ER) stress response pathways and results correlated with carfilzomib cytotoxic activity. Co-immunoprecipitation and pull down assays were performed to identify complex interactions among MCL-1, Noxa, and Bak. Results: Carfilzomib triggered ER stress and activation of both the intrinsic and extrinsic apoptotic pathways through alteration of the ubiquitin proteasome pathway. Consequently, the transcription factor CCAAT/enhancer-binding protein homology protein (CHOP) accumulated in response to carfilzomib, and CHOP depletion conferred protection against cytotoxicity. Carfilzomib also induced accumulation of MCL-1 and Noxa, whereby MCL-1 preferentially formed a complex with Noxa and consequently relieved MCL-19s protective effect on sequestering Bak. Accordingly, depletion of Noxa or both Bak and Bax conferred protection against carfilzomib-induced cell death. Conclusions: Collectively, carfilzomib induced ER stress culminating in activation of intrinsic and extrinsic caspase pathways, and we identified the CHOP protein level as a biomarker that could predict sensitivity to carfilzomib in CLL.

19 citations

Journal ArticleDOI
TL;DR: It is concluded that Grp 78 may contribute to the response of beta-cells to ER stress, and more attention should be paid to Grp78 in the improvement of diabetes.
Abstract: Endoplasmic reticulum (ER) stress-mediated apoptosis plays an important role in the destruction of pancreatic beta-cells and contributes to the development of type 1 diabetes. The chaperone molecule, glucose-regulated proteins 78 (Grp78), is required to maintain ER function during toxic insults. In this study, we investigated the changes of Grp78 expression in different phases of streptozotocin (STZ)-affected beta-cells to explore the relationship between Grp78 and the response of beta-cells to ER stress. An insulinoma cell line (NIT-1) treated with STZ for different time periods and STZ-induced diabetic Balb/C mice at different time points were used as the model system. The level of Grp78 and C/EBP homologous protein (CHOP) mRNA were detected by real-time polymerase chain reaction and their protein by immunoblot. Apoptosis and necrosis was measured by flow cytometry. In addition, the changes of Grp78 protein in STZ-treated nondiabetic mice were also detected by immunoblot. Grp78 expression significantly increased in the early phase but decreased in the later phase of affected beta-cells, while CHOP was induced and apoptosis occurred along with the decrease of Grp78. Interestingly, the Grp78 protein of STZ-treated nondiabetic mice increased stably compared with that of the control. From the results, we can conclude that Grp78 may contribute to the response of beta-cells to ER stress, and more attention should be paid to Grp78 in the improvement of diabetes.

19 citations

Journal ArticleDOI
TL;DR: It is concluded that regulation of CHOP by thrombin directs AECs toward apoptosis while promoting survival of lung fibroblasts, ultimately contributing to the persistent fibroproliferation seen in SSc-ILD and other fibrosing lung diseases.
Abstract: Apoptosis of alveolar epithelial cells (AECs) and survival of lung fibroblasts are critical events in the pathogenesis of pulmonary fibrosis; however, mechanisms underlying the apoptosis of AECs and the resistance of lung fibroblasts to apoptosis remain obscure. Herein, we demonstrate that the fate of these two cell types depends on the expression of CCAAT enhancer–binding homologous protein (CHOP). We observed that thrombin, which is overexpressed in scleroderma (SSc; systemic sclerosis) and other interstitial lung diseases (ILDs), increases the expression of CHOP in primary AECs and in A549 cells via an Ets1-dependent pathway. In addition, thrombin activates caspase-3 in AECs and induces apoptosis of these cells in a CHOP-dependent manner. In contrast, thrombin decreases endoplasmic reticulum stress–induced CHOP in lung fibroblasts through Myc-dependent mechanisms and protects such cells from apoptosis. Furthermore, when lung fibroblasts are transfected with recombinant CHOP, they then undergo apoptosis...

19 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
86% related
Transcription factor
82.8K papers, 5.4M citations
85% related
Protein kinase A
68.4K papers, 3.9M citations
85% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Cellular differentiation
90.9K papers, 6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
20203
20193
201811
201719
201648