scispace - formally typeset
Search or ask a question

Showing papers on "Transcription factor published in 2002"


Journal ArticleDOI
19 Apr 2002-Cell
TL;DR: In this paper, a review of recent progress as well as unanswered questions regarding the regulation and function of NF-kappaB and IKK is presented, focusing on recent progress and unanswered questions.

3,342 citations


Journal ArticleDOI
TL;DR: Interestingly, the growth-promoting activity of c-Jun is mediated by repression of tumour suppressors, as well as upregulation of positive cell cycle regulators, whereas JunB has the converse effect.
Abstract: The transcription factor AP-1 (activator protein-1) is involved in cellular proliferation, transformation and death. Using mice and cells lacking AP-1 components, the target-genes and molecular mechanisms mediating these processes were recently identified. Interestingly, the growth-promoting activity of c-Jun is mediated by repression of tumour suppressors, as well as upregulation of positive cell cycle regulators. Mostly, c-Jun is a positive regulator of cell proliferation, whereas JunB has the converse effect. The intricate relationships between the different Jun proteins, their activities and the mechanisms that mediate them will be discussed.

2,666 citations


Journal ArticleDOI
03 Jan 2002-Nature
TL;DR: It is demonstrated that mutations in either ire-1 or the transcription-factor-encoding xbp-1 gene abolished the UPR in Caenorhabditis elegans, suggesting that physiological ER load regulates a developmental decision in higher eukaryotes.
Abstract: The unfolded protein response (UPR), caused by stress, matches the folding capacity of endoplasmic reticulum (ER) to the load of client proteins in the organelle. In yeast, processing of HAC1 mRNA by activated Ire1 leads to synthesis of the transcription factor Hac1 and activation of the UPR. The responses to activated IRE1 in metazoans are less well understood. Here we demonstrate that mutations in either ire-1 or the transcription-factor-encoding xbp-1 gene abolished the UPR in Caenorhabditis elegans. Mammalian XBP-1 is essential for immunoglobulin secretion and development of plasma cells, and high levels of XBP-1 messenger RNA are found in specialized secretory cells. Activation of the UPR causes IRE1-dependent splicing of a small intron from the XBP-1 mRNA both in C. elegans and mice. The protein encoded by the processed murine XBP-1 mRNA accumulated during the UPR, whereas the protein encoded by unprocessed mRNA did not. Purified mouse IRE1 accurately cleaved XBP-1 mRNA in vitro, indicating that XBP-1 mRNA is a direct target of IRE1 endonucleolytic activity. Our findings suggest that physiological ER load regulates a developmental decision in higher eukaryotes.

2,643 citations


Journal ArticleDOI
28 Feb 2002-Nature
TL;DR: An Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals is developed, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.
Abstract: There is remarkable conservation in the recognition of pathogen-associated molecular patterns (PAMPs) by innate immune responses of plants, insects and mammals. We developed an Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals. Here we identify a complete plant MAP kinase cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) and WRKY22/WRKY29 transcription factors that function downstream of the flagellin receptor FLS2, a leucine-rich-repeat (LRR) receptor kinase. Activation of this MAPK cascade confers resistance to both bacterial and fungal pathogens, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.

2,480 citations


Journal ArticleDOI
23 Aug 2002-Cell
TL;DR: This work predicts regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity and identifies members of transcription factor gene families involved in developmental patterning or cell differentiation.

2,221 citations


Journal ArticleDOI
15 Aug 2002-Neuron
TL;DR: This review focuses on the current level of understanding of where, when, and how CREB family members function in the nervous system.

1,984 citations


Journal ArticleDOI
TL;DR: The Snail superfamily of zinc-finger transcription factors is involved in processes that imply pronounced cell movements, both during embryonic development and in the acquisition of invasive and migratory properties during tumour progression.
Abstract: The Snail superfamily of zinc-finger transcription factors is involved in processes that imply pronounced cell movements, both during embryonic development and in the acquisition of invasive and migratory properties during tumour progression. Different family members have also been implicated in the signalling cascade that confers left–right identity, as well as in the formation of appendages, neural differentiation, cell division and cell survival.

1,660 citations


Journal ArticleDOI
TL;DR: The results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors, and participates in a negative feedback loop which could serve to limit the duration or intensity of a Wnt-initiated signal.
Abstract: Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of beta-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by beta-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.

1,618 citations


Journal ArticleDOI
01 Feb 2002-Science
TL;DR: Full induction of HIF-1α and -2α relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.
Abstract: The hypoxia-inducible factors (HIFs) 1α and 2α are key mammalian transcription factors that exhibit dramatic increases in both protein stability and intrinsic transcriptional potency during low-oxygen stress. This increased stability is due to the absence of proline hydroxylation, which in normoxia promotes binding of HIF to the von Hippel–Lindau (VHL tumor suppressor) ubiquitin ligase. We now show that hypoxic induction of the COOH-terminal transactivation domain (CAD) of HIF occurs through abrogation of hydroxylation of a conserved asparagine in the CAD. Inhibitors of Fe(II)- and 2-oxoglutarate–dependent dioxygenases prevented hydroxylation of the Asn, thus allowing the CAD to interact with the p300 transcription coactivator. Replacement of the conserved Asn by Ala resulted in constitutive p300 interaction and strong transcriptional activity. Full induction of HIF-1α and -2α, therefore, relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.

1,501 citations


Journal ArticleDOI
22 Feb 2002-Cell
TL;DR: The nuclear receptor (NR) superfamily of transcription factors regulates gene expression in response to endocrine signaling, and recruitment of coregulators affords these receptors considerable functional flexibility.

1,474 citations


Journal ArticleDOI
TL;DR: The double-edged sword roles of PARP in DNA damage signaling and cell death are reviewed and the underlying mechanisms of the anti-inflammatory effects ofPARP inhibitors are summarized.
Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a member of the PARP enzyme family consisting of PARP-1 and several recently identified novel poly(ADP-ribosylating) enzymes. PARP-1 is an abundant nuclear protein functioning as a DNA nick-sensor enzyme. Upon binding to DNA breaks, activated PARP cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins including histones, transcription factors, and PARP itself. Poly(ADP-ribosylation) contributes to DNA repair and to the maintenance of genomic stability. On the other hand, oxidative stress-induced overactivation of PARP consumes NAD(+) and consequently ATP, culminating in cell dysfunction or necrosis. This cellular suicide mechanism has been implicated in the pathomechanism of stroke, myocardial ischemia, diabetes, diabetes-associated cardiovascular dysfunction, shock, traumatic central nervous system injury, arthritis, colitis, allergic encephalomyelitis, and various other forms of inflammation. PARP has also been shown to associate with and regulate the function of several transcription factors. Of special interest is the enhancement by PARP of nuclear factor kappa B-mediated transcription, which plays a central role in the expression of inflammatory cytokines, chemokines, adhesion molecules, and inflammatory mediators. Herein we review the double-edged sword roles of PARP in DNA damage signaling and cell death and summarize the underlying mechanisms of the anti-inflammatory effects of PARP inhibitors. Moreover, we discuss the potential use of PARP inhibitors as anticancer agents, radiosensitizers, and antiviral agents.

Journal ArticleDOI
TL;DR: The structure, biological function and the regulation of the C/EBP family are reviewed, which have revealed an immense complexity with the potential existence of cell/tissue- and species-specific differences.
Abstract: CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that all contain a highly conserved, basic-leucine zipper domain at the C-terminus that is involved in dimerization and DNA binding. At least six members of the family have been isolated and characterized to date (C/EBPa–C/EBPz), with further diversity produced by the generation of different sized polypeptides, predominantly by differential use of translation initiation sites, and extensive protein–protein interactions both within the family and with other transcription factors. The function of the C/EBPs has recently been investigated by a number of approaches, including studies on mice that lack specific members, and has identified pivotal roles of the family in the control of cellular proliferation and differentiation, metabolism, inflammation and numerous other responses, particularly in hepatocytes, adipocytes and haematopoietic cells. The expression of the C/EBPs is regulated at multiple levels during several physiological and pathophysiological conditions through the action of a range of factors, including hormones, mitogens, cytokines, nutrients and certain toxins. The mechanisms through which the C/EBP members are regulated during such conditions have also been the focus of several recent studies and have revealed an immense complexity with the potential existence of cell/tissue- and species-specific differences. This review deals with the structure, biological function and the regulation of the C/EBP family.

Journal ArticleDOI
TL;DR: This review aims to summarize the current knowledge of oxygen‐regulated gene expression, which includes the finding that HIF‐1 regulates the expression of many more genes apart from erythropoietin, and the elucidation of the oxygen‐dependent mechanisms degrading the HIF a subunits.
Abstract: Although it was known for a long time that oxygen deprivation leads to the transcriptional induction of the gene encoding erythropoietin, the molecular mechanisms behind this process remained enigmatic. The cloning of the hypoxia-inducible factors (HIFs), the finding that HIF-1 regulates the expression of many more genes apart from erythropoietin, and the elucidation of the oxygen-dependent mechanisms degrading the HIF alpha subunits recently led to the spectacular discovery of the molecular principles of oxygen sensing. This review aims to summarize our current knowledge of oxygen-regulated gene expression..

Journal ArticleDOI
TL;DR: These studies position mTOR as an upstream activator of HIF-1 function in cancer cells and suggest that the antitumor activity of rapamycin is mediated, in part, through the inhibition of cellular responses to hypoxic stress.
Abstract: Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor containing an inducibly expressed HIF-1α subunit and a constititutively expressed HIF-1β subunit. Under hypoxic conditions, the HIF-1α subunit accumulates due to a decrease in the rate of proteolytic degradation, and the resulting HIF-1α-HIF-1β heterodimers undergo posttranslational modifications that promote transactivation. Recent studies suggest that amplified signaling through phosphoinositide 3-kinase, and its downstream target, mTOR, enhances HIF-1-dependent gene expression in certain cell types. In the present study, we have explored further the linkage between mTOR and HIF-1 in PC-3 prostate cancer cells treated with hypoxia or the hypoxia mimetic agent, CoCl2. Pretreatment of PC-3 cells with the mTOR inhibitor, rapamycin, inhibited both the accumulation of HIF-1α and HIF-1-dependent transcription induced by hypoxia or CoCl2. Transfection of these cells with wild-type mTOR enhanced HIF-1 activation by hypoxia or CoCl2, while expression of a rapamycin-resistant mTOR mutant rendered both HIF-1α stabilization and HIF-1 transactivating function refractory to inhibition by rapamycin. Studies with GAL4-HIF-1α fusion proteins pinpointed the oxygen-dependent degradation domain as a critical target for the rapamycin-sensitive, mTOR-dependent signaling pathway leading to HIF-1α stabilization by CoCl2. These studies position mTOR as an upstream activator of HIF-1 function in cancer cells and suggest that the antitumor activity of rapamycin is mediated, in part, through the inhibition of cellular responses to hypoxic stress.

Journal ArticleDOI
TL;DR: A limited list of transcription factors are overactive in most human cancer cells, which makes them targets for the development of anticancer drugs and how could specific transcription-factor activity be inhibited?
Abstract: A limited list of transcription factors are overactive in most human cancer cells, which makes them targets for the development of anticancer drugs. That they are the most direct and hopeful targets for treating cancer is proposed, and this is supported by the fact that there are many more human oncogenes in signalling pathways than there are oncogenic transcription factors. But how could specific transcription-factor activity be inhibited?

Journal ArticleDOI
TL;DR: A molecular approach to investigate auxin signaling in plants has led to the identification of several classes of early/primary auxin response genes, and a family of trans-acting transcription factors that bind with specificity to AuxREs has been characterized.
Abstract: A molecular approach to investigate auxin signaling in plants has led to the identification of several classes of early/primary auxin response genes. Within the promoters of these genes, cis elements that confer auxin responsiveness (referred to as auxin-response elements or AuxREs) have been defined, and a family of trans-acting transcription factors (auxin-response factors or ARFs) that bind with specificity to AuxREs has been characterized. A family of auxin regulated proteins referred to as Aux/IAA proteins also play a key role in regulating these auxin-response genes. Auxin may regulate transcription on early response genes by influencing the types of interactions between ARFs and Aux/IAAs.

Journal Article
TL;DR: Analysis of the expression patterns of SLUG, SNAIL, and E-cadherin in breast cancer cell lines demonstrated that expression of SLug was strongly correlated with loss of E- cadheringin transcripts, and the data indicate the E-box elements in the proximal E-Cadher in promoter are critical in transcriptional repression of the E -cadhersin gene.
Abstract: Loss of expression of the E-cadherin cell-cell adhesion molecule is important in carcinoma development and progression. Because previous data suggest that loss of E-cadherin expression in breast carcinoma may result from a dominant transcriptional repression pathway acting on the E-cadherin proximal promoter, we pursued studies of cis sequences and transcription factors regulating E-cadherin expression in breast cancer cells. E-box elements in the E-cadherin promoter were found to play a critical negative regulatory role in E-cadherin gene transcription in breast cancer cell lines lacking E-cadherin transcription. The E-box elements had a minimal role in E-cadherin transcription in breast cancer cell lines expressing E-cadherin. Two zinc-finger transcription factors known to bind E-box elements, SLUG and SNAIL, repressed E-cadherin-driven reporter gene constructs containing wild-type promoter sequences but not those with mutations in the E-box elements. Additionally, both SLUG and SNAIL repressed endogenous E-cadherin expression. These findings suggest SLUG and SNAIL are potential repressors of E-cadherin transcription in carcinomas lacking E-cadherin expression. Analysis of the expression patterns of SLUG, SNAIL, and E-cadherin in breast cancer cell lines demonstrated that expression of SLUG was strongly correlated with loss of E-cadherin transcripts. Taken together, the data indicate the E-box elements in the proximal E-cadherin promoter are critical in transcriptional repression of the E-cadherin gene, and SLUG is a likely in vivo repressor of E-cadherin in breast cancer.

Journal ArticleDOI
TL;DR: It is proposed that nuclear- localized IRE1alpha and cytoplasmic-localized ATF6 signaling pathways merge through regulation of XBP1 activity to induce downstream gene expression.
Abstract: All eukaryotic cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by signaling an adaptive pathway termed the unfolded protein response (UPR). In yeast, a type-I ER transmembrane protein kinase, Ire1p, is the proximal sensor of unfolded proteins in the ER lumen that initiates an unconventional splicing reaction on HAC1 mRNA. Hac1p is a transcription factor required for induction of UPR genes. In higher eukaryotic cells, the UPR also induces site-2 protease (S2P)-mediated cleavage of ER-localized ATF6 to generate an N-terminal fragment that activates transcription of UPR genes. To elucidate the requirements for IRE1α and ATF6 for signaling the mammalian UPR, we identified a UPR reporter gene that was defective for induction in IRE1α-null mouse embryonic fibroblasts and S2P-deficient Chinese hamster ovary (CHO) cells. We show that the endoribonuclease activity of IRE1α is required to splice XBP1 (X-box binding protein) mRNA to generate a new C terminus, thereby converting it into a potent UPR transcriptional activator. IRE1α was not required for ATF6 cleavage, nuclear translocation, or transcriptional activation. However, ATF6 cleavage was required for IRE1α-dependent induction of UPR transcription. We propose that nuclear-localized IRE1α and cytoplasmic-localized ATF6 signaling pathways merge through regulation of XBP1 activity to induce downstream gene expression. Whereas ATF6 increases the amount of XBP1 mRNA, IRE1α removes an unconventional 26-nucleotide intron that increases XBP1 transactivation potential. Both processing of ATF6 and IRE1α-mediated splicing of XBP1 mRNA are required for full activation of the UPR.

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge about the molecular functions and interactions of the σS subunit of RNA polymerase and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system.
Abstract: The sigma(S) (RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli and related bacteria. While rapidly growing cells contain very little sigma(S), exposure to many different stress conditions results in rapid and strong sigma(S) induction. Consequently, transcription of numerous sigma(S)-dependent genes is activated, many of which encode gene products with stress-protective functions. Multiple signal integration in the control of the cellular sigma(S) level is achieved by rpoS transcriptional and translational control as well as by regulated sigma(S) proteolysis, with various stress conditions differentially affecting these levels of sigma(S) control. Thus, a reduced growth rate results in increased rpoS transcription whereas high osmolarity, low temperature, acidic pH, and some late-log-phase signals stimulate the translation of already present rpoS mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high temperature result in stabilization of sigma(S), which, under nonstress conditions, is degraded with a half-life of one to several minutes. Important cis-regulatory determinants as well as trans-acting regulatory factors involved at all levels of sigma(S) regulation have been identified. rpoS translation is controlled by several proteins (Hfq and HU) and small regulatory RNAs that probably affect the secondary structure of rpoS mRNA. For sigma(S) proteolysis, the response regulator RssB is essential. RssB is a specific direct sigma(S) recognition factor, whose affinity for sigma(S) is modulated by phosphorylation of its receiver domain. RssB delivers sigma(S) to the ClpXP protease, where sigma(S) is unfolded and completely degraded. This review summarizes our current knowledge about the molecular functions and interactions of these components and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system.

Journal ArticleDOI
TL;DR: It is shown that phosphorylation of purified rat Nrf2 by the catalytic subunit of PKC was blocked by a synthetic peptide mimicking one of the potential PKC sites, suggesting that the PKC-catalyzed phosphorylating of NRF2 at Ser-40 is a critical signaling event leading to ARE-mediated cellular antioxidant response.

Journal ArticleDOI
23 Aug 2002-Cell
TL;DR: It is shown that class II HDACs are substrates for a stress-responsive kinase specific for conserved serines that regulate MEF2-HDAC interactions, and act as signal-responsive suppressors of the transcriptional program governing cardiac hypertrophy and heart failure.

Journal ArticleDOI
TL;DR: AR demonstrates distinct differences in its interaction with coregulators from other steroid receptors due to differences in the functional interaction between AR domains, possibly resulting in alterations in the dynamic interactions between coregulator complexes.
Abstract: The biological action of androgens is mediated through the androgen receptor (AR). Androgen-bound AR functions as a transcription factor to regulate genes involved in an array of physiological processes, most notably male sexual differentiation and maturation, and the maintenance of spermatogenesis. The transcriptional activity of AR is affected by coregulators that influence a number of functional properties of AR, including ligand selectivity and DNA binding capacity. As the promoter of target genes, coregulators participate in DNA modification, either directly through modification of histones or indirectly by the recruitment of chromatin-modifying complexes, as well as functioning in the recruitment of the basal transcriptional machinery. Aberrant coregulator activity due to mutation or altered expression levels may be a contributing factor in the progression of diseases related to AR activity, such as prostate cancer. AR demonstrates distinct differences in its interaction with coregulators from other steroid receptors due to differences in the functional interaction between AR domains, possibly resulting in alterations in the dynamic interactions between coregulator complexes.

Journal ArticleDOI
TL;DR: Evidence is considered of the evidence implicating Stat proteins, particularly Stats 1, 3, and 5, in tumor formation and progression and the role of this protein in a number of biological functions had to be determined in conditional knockouts.
Abstract: The discovery of Stat proteins’ key role in IFN signaling, initially described over ten years ago, provided the first molecular link of growth factor receptor stimulation to the direct activation of a transcription factor (1). Since that time a large number of growth factor receptors and some nonreceptor tyrosine kinases have been found to lead to the activation of these transcription factors (2). The contributions of individual Stat proteins to normal cytokine signaling and development have been studied in various cell culture systems and in vivo in mice made deficient for one or more of these proteins (3). This approach has identified some related roles, as well as many unique, nonoverlapping physiological roles, for the various members of the Stat family. In summary, Stat1-deficient mice are unable to respond to IFNs and are subsequently susceptible to bacterial and viral pathogens. Likewise, disruption of Stat2 gives rise to animals unable to respond to type 1 IFNs, with increased susceptibility to viral infections (see Candotti et al., this Perspective series, ref. 4). Stat4- and Stat6-deficient animals reveal a requirement for IL-12– or IL-4–mediated proliferation of T cells, respectively (see Decker et al., this series, ref. 5). The phenotypes of Stat5A and Stat5B individual knockouts reveal the importance of Stat5A in breast development and lactation and the importance of Stat5B in the development of sexually dimorphic patterns of gene expression within the liver. In addition to these phenotypes, Stat5A/5B double knockouts are abnormal in their T cell and B cell development. Because Stat3-deficient animals die early in embryogenesis, the role of this protein in a number of biological functions had to be determined in conditional knockouts. As discussed by Levy and Lee in this series (6), Stat3 is implicated in keratinocyte migration, T cell apoptosis, IL-10–mediated signaling in macrophages, and the induction of apoptosis in the involuting breast. Beyond these various roles in normal cellular and physiological processes, the Stat proteins are now known to participate in cellular transformation and oncogenesis. Here, I consider the evidence implicating these molecules, particularly Stats 1, 3, and 5, in tumor formation and progression.

Journal Article
TL;DR: Hypoxia-elicited MDR1 gene induction and increased P-glycoprotein expression in nontransformed, primary cultures of human microvascular endothelial cells, and analysis of multicellular spheroids subjected to hypoxia revealed increased resistance to doxorubicin are confirmed.
Abstract: The microenvironment of rapidly growing tumors is associated with increased energy demand and diminished vascular supply, resulting in focal areas of prominent hypoxia. A number of hypoxia-responsive genes have been associated with growing tumors, and here we demonstrate that the multidrug resistance (MDR1) gene product P-glycoprotein, a Mr approximately 170,000 transmembrane protein associated with tumor resistance to chemotherapeutics, is induced by ambient hypoxia. Initial studies using quantitative microarray analysis of RNA revealed an approximately 7-fold increase in MDR in epithelial cells exposed to hypoxia (pO(2) 20 torr, 18 h). These findings were further confirmed at the mRNA and protein level. P-Glycoprotein function was studied by analysis of verapamil-inhibitable efflux of digoxin and rhodamine 123 in intact T84 cells and revealed that hypoxia enhances P-glycoprotein function by as much as 7 +/- 0.4-fold over normoxia. Subsequent studies confirmed hypoxia-elicited MDR1 gene induction and increased P-glycoprotein expression in nontransformed, primary cultures of human microvascular endothelial cells, and analysis of multicellular spheroids subjected to hypoxia revealed increased resistance to doxorubicin. Examination of the MDR1 gene identified a binding site for hypoxia inducible factor-1 (HIF-1), and inhibition of HIF-1 expression by antisense oligonucleotides resulted in significant inhibition of hypoxia-inducible MDR1 expression and a nearly complete loss of basal MDR1 expression. Studies using luciferase promoter constructs revealed a significant increase in activity in cells subjected to hypoxia, and such hypoxia inducibility was lost in truncated constructs lacking the HIF-1 site and in HIF-1 binding site mutants. Extensions of these studies also identified a role for Sp1 in this hypoxia response. Taken together, these data indicate that the MDR1 gene is hypoxia responsive, and such results may identify hypoxia-elicited P-glycoprotein expression as a pathway for resistance of some tumors to chemotherapeutics.

Journal ArticleDOI
TL;DR: It is reported that Id1, a dominant negative inhibitor of basic helix-loop-helix proteins, is a direct target gene for BMP, and the results provide important new insights into how the BMP/Smad pathway can specifically activate target genes.

Journal ArticleDOI
TL;DR: Examining molecular responses of human skin to UV irradiation provides not only a framework for understanding mechanisms involved in skin aging, but also may help in development of new clinical strategies to impede chronological and UV-induced skin aging.

Journal ArticleDOI
19 Jul 2002-Science
TL;DR: Genetic analysis revealed a complex network of newly found factors that govern critical cell size at Start, the most potent of which were Sfp1, Sch9, Cdh1, Prs3, and Whi5.
Abstract: Size homeostasis in budding yeast requires that cells grow to a critical size before commitment to division in the late prereplicative growth phase of the cell cycle, an event termed Start. We determined cell size distributions for the complete set of approximately 6000 Saccharomyces cerevisiae gene deletion strains and identified approximately 500 abnormally small (whi) or large (lge) mutants. Genetic analysis revealed a complex network of newly found factors that govern critical cell size at Start, the most potent of which were Sfp1, Sch9, Cdh1, Prs3, and Whi5. Ribosome biogenesis is intimately linked to cell size through Sfp1, a transcription factor that controls the expression of at least 60 genes implicated in ribosome assembly. Cell growth and division appear to be coupled by multiple conserved mechanisms.

Journal ArticleDOI
TL;DR: It is reported that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele.
Abstract: The sonic hedgehog (SHH) signaling pathway directs the embryonic development of diverse organisms and is disrupted in a variety of malignancies. Pathway activation is triggered by binding of hedgehog proteins to the multipass Patched-1 (PTCH) receptor, which in the absence of hedgehog suppresses the activity of the seven-pass membrane protein Smoothened (SMOH). De-repression of SMOH culminates in the activation of one or more of the GLI transcription factors that regulate the transcription of downstream targets. Individuals with germline mutations of the SHH receptor gene PTCH are at high risk of developmental anomalies and of basal-cell carcinomas, medulloblastomas and other cancers (a pattern consistent with nevoid basal-cell carcinoma syndrome, NBCCS). In keeping with the role of PTCH as a tumor-suppressor gene, somatic mutations of this gene occur in sporadic basal-cell carcinomas and medulloblastomas. We report here that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele. Several of these mutations encode truncated proteins that are unable to export the GLI transcription factor from nucleus to cytoplasm, resulting in the activation of SHH signaling. SUFU is a newly identified tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway through a newly identified mechanism.

Journal ArticleDOI
08 Feb 2002-Science
TL;DR: It is reported here that the leukemia-promoting PML-RAR fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hyper methylation contributes to its leukemogenic potential.
Abstract: DNA methylation of tumor suppressor genes is a frequent mechanism of transcriptional silencing in cancer. The molecular mechanisms underlying the specificity of methylation are unknown. We report here that the leukemia-promoting PML-RAR fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential. Retinoic acid treatment induces promoter demethylation, gene reexpression, and reversion of the transformed phenotype. These results establish a mechanistic link between genetic and epigenetic changes during transformation and suggest that hypermethylation contributes to the early steps of carcinogenesis.

Journal ArticleDOI
TL;DR: It is demonstrated that the p300 and CBP acetyltransferases play a major role in the in vivo acetylation of RelA, principally targeting lysines 218, 221 and 310 for modification.
Abstract: The nuclear function of the heterodimeric NF-κB transcription factor is regulated in part through reversible acetylation of its RelA subunit. We now demonstrate that the p300 and CBP acetyltransferases play a major role in the in vivo acetylation of RelA, principally targeting lysines 218, 221 and 310 for modification. Analysis of the functional properties of hypoacetylated RelA mutants containing lysine-to-arginine substitutions at these sites and of wild-type RelA co-expressed in the presence of a dominantly interfering mutant of p300 reveals that acetylation at lysine 221 in RelA enhances DNA binding and impairs assembly with IκBα. Conversely, acetylation of lysine 310 is required for full transcriptional activity of RelA in the absence of effects on DNA binding and IκBα assembly. Together, these findings highlight how site-specific acetylation of RelA differentially regulates distinct biological activities of the NF-κB transcription factor complex.