scispace - formally typeset
Search or ask a question

Showing papers on "Transcription factor published in 2010"


Journal ArticleDOI
TL;DR: It is demonstrated in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions.

9,620 citations


Journal ArticleDOI
TL;DR: The epigenetic landscape of enhancer elements in embryonic stem cells and several adult tissues in the mouse is interrogated and it is found that histone H3K27ac distinguishes active enhancers from inactive/poised enhancers and poised enhancer networks provide clues to unrealized developmental programs.
Abstract: Developmental programs are controlled by transcription factors and chromatin regulators, which maintain specific gene expression programs through epigenetic modification of the genome. These regulatory events at enhancers contribute to the specific gene expression programs that determine cell state and the potential for differentiation into new cell types. Although enhancer elements are known to be associated with certain histone modifications and transcription factors, the relationship of these modifications to gene expression and developmental state has not been clearly defined. Here we interrogate the epigenetic landscape of enhancer elements in embryonic stem cells and several adult tissues in the mouse. We find that histone H3K27ac distinguishes active enhancers from inactive/poised enhancer elements containing H3K4me1 alone. This indicates that the amount of actively used enhancers is lower than previously anticipated. Furthermore, poised enhancer networks provide clues to unrealized developmental programs. Finally, we show that enhancers are reset during nuclear reprogramming.

3,541 citations


Journal ArticleDOI
25 Feb 2010-Nature
TL;DR: In this paper, a combination of three transcription factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, was used to convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro.
Abstract: Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.

2,730 citations


Journal ArticleDOI
TL;DR: Understanding the specific molecular events that regulate the production of IL-10 will help to answer the remaining questions that are important for the design of new strategies of immune intervention.
Abstract: Interleukin-10 (IL-10), a cytokine with anti-inflammatory properties, has a central role in infection by limiting the immune response to pathogens and thereby preventing damage to the host. Recently, an increasing interest in how IL10 expression is regulated in different immune cells has revealed some of the molecular mechanisms involved at the levels of signal transduction, epigenetics, transcription factor binding and gene activation. Understanding the specific molecular events that regulate the production of IL-10 will help to answer the remaining questions that are important for the design of new strategies of immune intervention.

2,491 citations


Journal ArticleDOI
TL;DR: It is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes, and that members of the family play roles in both the repression and de-repression of important plant processes.

1,967 citations


Journal ArticleDOI
TL;DR: The findings indicate that the pathological process associated with p62 accumulation results in hyperactivation of Nrf2 and delineates unexpected roles of selective autophagy in controlling the transcription of cellular defence enzyme genes.
Abstract: Impaired selective turnover of p62 by autophagy causes severe liver injury accompanied by the formation of p62-positive inclusions and upregulation of detoxifying enzymes. These phenotypes correspond closely to the pathological conditions seen in human liver diseases, including alcoholic hepatitis and hepatocellular carcinoma. However, the molecular mechanisms and pathophysiological processes in these events are still unknown. Here we report the identification of a novel regulatory mechanism by p62 of the transcription factor Nrf2, whose target genes include antioxidant proteins and detoxification enzymes. p62 interacts with the Nrf2-binding site on Keap1, a component of Cullin-3-type ubiquitin ligase for Nrf2. Thus, an overproduction of p62 or a deficiency in autophagy competes with the interaction between Nrf2 and Keap1, resulting in stabilization of Nrf2 and transcriptional activation of Nrf2 target genes. Our findings indicate that the pathological process associated with p62 accumulation results in hyperactivation of Nrf2 and delineates unexpected roles of selective autophagy in controlling the transcription of cellular defence enzyme genes.

1,918 citations


Journal ArticleDOI
06 Aug 2010-Cell
TL;DR: A model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes is proposed.

1,768 citations


01 Aug 2010
TL;DR: In this paper, the identification of lincRNAs (lincRNA-p21) that serve as a repressor in p53-dependent transcriptional responses was reported, and the observed transcriptional repression was mediated through the physical association with hnRNP-K at repressed genes and regulation of p53 mediates apoptosis.
Abstract: Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.

1,593 citations


Journal ArticleDOI
TL;DR: It is demonstrated that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis, through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor and sterol regulatory element-binding protein.

1,507 citations


Journal ArticleDOI
TL;DR: IFI16 (p204) is the first PYHIN protein to their knowledge shown to be involved in IFN-β induction and forms a new family of innate DNA sensors the authors call 'AIM2-like receptors' (ALRs).
Abstract: The detection of intracellular microbial DNA is critical to appropriate innate immune responses; however, knowledge of how such DNA is sensed is limited. Here we identify IFI16, a PYHIN protein, as an intracellular DNA sensor that mediates the induction of interferon-β (IFN-β). IFI16 directly associated with IFN-β-inducing viral DNA motifs. STING, a critical mediator of IFN-β responses to DNA, was recruited to IFI16 after DNA stimulation. Lowering the expression of IFI16 or its mouse ortholog p204 by RNA-mediated interference inhibited gene induction and activation of the transcription factors IRF3 and NF-κB induced by DNA and herpes simplex virus type 1 (HSV-1). IFI16 (p204) is the first PYHIN protein to our knowledge shown to be involved in IFN-β induction. Thus, the PYHIN proteins IFI16 and AIM2 form a new family of innate DNA sensors we call 'AIM2-like receptors' (ALRs).

1,440 citations


Journal ArticleDOI
TL;DR: This work has mapped an antioxidant response element (ARE) in the p62 promoter that is responsible for its induction by oxidative stress via NRF2 and explains how p62 contributes to activation ofNRF2 target genes in response to oxidative stress through creating a positive feedback loop.

Journal ArticleDOI
TL;DR: The evidence for a role of miR-34a and miR/c in the apoptotic response of normal and tumor cells is surveyed and has been linked to resistance against apoptosis induced by p53 activating agents used in chemotherapy.
Abstract: Recently, the transcription factor encoded by tumor suppressor gene p53 was shown to regulate the expression of microRNAs. The most significant induction by p53 was observed for the microRNAs miR-34a and miR-34b/c, which turned out to be direct p53 target genes. Ectopic miR-34 expression induces apoptosis, cell-cycle arrest or senescence. In many tumor types the promoters of the miR-34a and the miR-34b/c genes are subject to inactivation by CpG methylation. MiR-34a resides on 1p36 and is commonly deleted in neuroblastomas. Furthermore, the loss of miR-34 expression has been linked to resistance against apoptosis induced by p53 activating agents used in chemotherapy. In this review, the evidence for a role of miR-34a and miR-34b/c in the apoptotic response of normal and tumor cells is surveyed.


Journal ArticleDOI
TL;DR: It is concluded that Gas5 is a “riborepressor” of the GR, influencing cell survival and metabolic activities during starvation by modulating the transcriptional activity of theGR.
Abstract: The availability of nutrients influences cellular growth and survival by affecting gene transcription. Glucocorticoids also influence gene transcription and have diverse activities on cell growth, energy expenditure, and survival. We found that the growth arrest-specific 5 (Gas5) noncoding RNA, which is abundant in cells whose growth has been arrested because of lack of nutrients or growth factors, sensitized cells to apoptosis by suppressing glucocorticoid-mediated induction of several responsive genes, including the one encoding cellular inhibitor of apoptosis 2. Gas5 bound to the DNA-binding domain of the glucocorticoid receptor (GR) by acting as a decoy glucocorticoid response element (GRE), thus competing with DNA GREs for binding to the GR. We conclude that Gas5 is a "riborepressor" of the GR, influencing cell survival and metabolic activities during starvation by modulating the transcriptional activity of the GR.

Journal ArticleDOI
TL;DR: It is found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death, and the microRNA miR-21 regulatesPDCD4 expression after LPS stimulation.
Abstract: The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.

Journal ArticleDOI
22 Jan 2010-Cell
TL;DR: It is demonstrated that SIRT6 functions as a histone H3K9 deacetylase to control the expression of multiple glycolytic genes, and appears to function as a corepressor of the transcription factor Hif1alpha, a critical regulator of nutrient stress responses.

Journal ArticleDOI
26 Aug 2010-Nature
TL;DR: It is reported that SIRT1 modulates synaptic plasticity and memory formation via a microRNA-mediated mechanism and is demonstrated as a potential therapeutic target for the treatment of central nervous system disorders.
Abstract: The NAD-dependent deacetylase Sir2 was initially identified as a mediator of replicative lifespan in budding yeast and was subsequently shown to modulate longevity in worms and flies. Its mammalian homologue, SIRT1, seems to have evolved complex systemic roles in cardiac function, DNA repair and genomic stability. Recent studies suggest a functional relevance of SIRT1 in normal brain physiology and neurological disorders. However, it is unknown if SIRT1 has a role in higher-order brain functions. We report that SIRT1 modulates synaptic plasticity and memory formation via a microRNA-mediated mechanism. Activation of SIRT1 enhances, whereas its loss-of-function impairs, synaptic plasticity. Surprisingly, these effects were mediated via post-transcriptional regulation of cAMP response binding protein (CREB) expression by a brain-specific microRNA, miR-134. SIRT1 normally functions to limit expression of miR-134 via a repressor complex containing the transcription factor YY1, and unchecked miR-134 expression following SIRT1 deficiency results in the downregulated expression of CREB and brain-derived neurotrophic factor (BDNF), thereby impairing synaptic plasticity. These findings demonstrate a new role for SIRT1 in cognition and a previously unknown microRNA-based mechanism by which SIRT1 regulates these processes. Furthermore, these results describe a separate branch of SIRT1 signalling, in which SIRT1 has a direct role in regulating normal brain function in a manner that is disparate from its cell survival functions, demonstrating its value as a potential therapeutic target for the treatment of central nervous system disorders.

Journal ArticleDOI
TL;DR: The discovery that globular actin polymerization liberates myocardin-related transcription factor (MRTF) cofactors induces the nuclear transcription factor serum response factor (SRF) to modulate the expression of genes encoding structural and regulatory effectors of actin dynamics stimulated research to better understand the actin–MRTF–SRF circuit.
Abstract: Numerous physiological and pathological stimuli promote the rearrangement of the actin cytoskeleton, thereby modulating cellular motile functions. Although it seems intuitively obvious that cell motility requires coordinated protein biosynthesis, until recently the linkage between cytoskeletal actin dynamics and correlated gene activities remained unknown. This knowledge gap was filled in part by the discovery that globular actin polymerization liberates myocardin-related transcription factor (MRTF) cofactors, thereby inducing the nuclear transcription factor serum response factor (SRF) to modulate the expression of genes encoding structural and regulatory effectors of actin dynamics. This insight stimulated research to better understand the actin-MRTF-SRF circuit and to identify alternative mechanisms that link cytoskeletal dynamics and genome activity.

Journal ArticleDOI
12 Nov 2010-Cell
TL;DR: Comparison to ROS-regulated growth control in animals suggests that a similar mechanism is used in plants and animals.

Journal ArticleDOI
TL;DR: This work reports that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1α and its downstream target, the transcription factor XBP1, identifying an unsuspected critical function for XBP 1 in mammalian host defenses.
Abstract: Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1alpha and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1alpha by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.

Journal ArticleDOI
TL;DR: All three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.
Abstract: A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.

Journal ArticleDOI
TL;DR: These findings provide a working model in which TMPRSS2-ERG plays a critical role in cancer progression by disrupting lineage-specific differentiation of the prostate and potentiating the EZH2-mediated dedifferentiation program.

Journal ArticleDOI
TL;DR: A substantial fraction of extragenic Pol II transcription sites coincides with transcriptional enhancers, which may be relevant for functional annotation of mammalian genomes.
Abstract: Mammalian genomes are pervasively transcribed outside mapped protein-coding genes. One class of extragenic transcription products is represented by long non-coding RNAs (lncRNAs), some of which result from Pol_II transcription of bona-fide RNA genes. Whether all lncRNAs described insofar are products of RNA genes, however, is still unclear. Here we have characterized transcription sites located outside protein-coding genes in a highly regulated response, macrophage activation by endotoxin. Using chromatin signatures, we could unambiguously classify extragenic Pol_II binding sites as belonging to either canonical RNA genes or transcribed enhancers. Unexpectedly, 70% of extragenic Pol_II peaks were associated with genomic regions with a canonical chromatin signature of enhancers. Enhancer-associated extragenic transcription was frequently adjacent to inducible inflammatory genes, was regulated in response to endotoxin stimulation, and generated very low abundance transcripts. Moreover, transcribed enhancers were under purifying selection and contained binding sites for inflammatory transcription factors, thus suggesting their functionality. These data demonstrate that a large fraction of extragenic Pol_II transcription sites can be ascribed to cis-regulatory genomic regions. Discrimination between lncRNAs generated by canonical RNA genes and products of transcribed enhancers will provide a framework for experimental approaches to lncRNAs and help complete the annotation of mammalian genomes.

Journal ArticleDOI
TL;DR: STAT3 is not only a downstream target of IL-6 but, with MiR-21, miR-181b-1, PTEN, and CYLD, is part of the positive feedback loop that underlies the epigenetic switch that links inflammation to cancer.

Journal ArticleDOI
TL;DR: This work uses transcript profiling and chromatin-immunoprecipitation microarray experiments to identify 953 BR-regulated BZR1 target (BRBT) genes and reveals a regulatory network that integrates hormonal and light-signaling pathways for plant growth regulation.

Journal ArticleDOI
21 May 2010-Science
TL;DR: Large interspecies differences in transcriptional regulation and insight into regulatory evolution are revealed and revealed in livers of five vertebrates.
Abstract: Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs, CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding is species-specific, and aligned binding events present in all five species are rare. Regions near genes with expression levels that are dependent on a TF are often bound by the TF in multiple species yet show no enhanced DNA sequence constraint. Binding divergence between species can be largely explained by sequence changes to the bound motifs. Among the binding events lost in one lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large interspecies differences in transcriptional regulation and provide insight into regulatory evolution.

Journal ArticleDOI
TL;DR: It is demonstrated that the UPR is an important mediator of the hypoxic tumor microenvironment and that it contributes to resistance to treatment through its ability to facilitate autophagy.
Abstract: Tumor hypoxia is a common microenvironmental factor that adversely influences tumor phenotype and treatment response. Cellular adaptation to hypoxia occurs through multiple mechanisms, including activation of the unfolded protein response (UPR). Recent reports have indicated that hypoxia activates a lysosomal degradation pathway known as autophagy, and here we show that the UPR enhances the capacity of hypoxic tumor cells to carry out autophagy, and that this promotes their survival. In several human cancer cell lines, hypoxia increased transcription of the essential autophagy genes microtubule-associated protein 1 light chain 3beta (MAP1LC3B) and autophagy-related gene 5 (ATG5) through the transcription factors ATF4 and CHOP, respectively, which are regulated by PKR-like ER kinase (PERK, also known as EIF2AK3). MAP1LC3B and ATG5 are not required for initiation of autophagy but mediate phagophore expansion and autophagosome formation. We observed that transcriptional induction of MAP1LC3B replenished MAP1LC3B protein that was turned over during extensive hypoxia-induced autophagy. Correspondingly, cells deficient in PERK signaling failed to transcriptionally induce MAP1LC3B and became rapidly depleted of MAP1LC3B protein during hypoxia. Consistent with these data, autophagy and MAP1LC3B induction occurred preferentially in hypoxic regions of human tumor xenografts. Furthermore, pharmacological inhibition of autophagy sensitized human tumor cells to hypoxia, reduced the fraction of viable hypoxic tumor cells, and sensitized xenografted human tumors to irradiation. Our data therefore demonstrate that the UPR is an important mediator of the hypoxic tumor microenvironment and that it contributes to resistance to treatment through its ability to facilitate autophagy.

Journal ArticleDOI
18 Mar 2010-Nature
TL;DR: Ca2+ signalling complexity is revealed and key positive roles of specific CDPKs are demonstrated in initial MAMP signalling in plant innate immune signalling.
Abstract: Innate immunity represents the first line of inducible defence against microbial infection in plants and animals. In both kingdoms, recognition of pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively), such as flagellin, initiates convergent signalling pathways involving mitogen-activated protein kinase (MAPK) cascades and global transcriptional changes to boost immunity. Although Ca(2+) has long been recognized as an essential and conserved primary mediator in plant defence responses, how Ca(2+) signals are sensed and relayed into early MAMP signalling is unknown. Using a functional genomic screen and genome-wide gene expression profiling, here we show that four calcium-dependent protein kinases (CDPKs) are Ca(2+)-sensor protein kinases critical for transcriptional reprogramming in plant innate immune signalling. Unexpectedly, CDPKs and MAPK cascades act differentially in four MAMP-mediated regulatory programs to control early genes involved in the synthesis of defence peptides and metabolites, cell wall modifications and redox signalling. Transcriptome profile comparison suggests that CDPKs are the convergence point of signalling triggered by most MAMPs. Double, triple and quadruple cpk mutant plants display progressively diminished oxidative burst and gene activation induced by the 22-amino-acid peptide flg22, as well as compromised pathogen defence. In contrast to negative roles of calmodulin and a calmodulin-activated transcription factor in plant defence, the present study reveals Ca(2+) signalling complexity and demonstrates key positive roles of specific CDPKs in initial MAMP signalling.

Journal ArticleDOI
TL;DR: The first genome-wide analysis of transcriptional interactions using the mouse globin genes in erythroid tissues reveals extensive and preferential intra- and interchromosomal transcription interactomes, establishing a new gene expression paradigm.
Abstract: Peter Fraser and colleagues report a genome-wide analysis of transcription interactions involving the globin genes in mouse erythroid cells. They demonstrate that the transcription factor Klf1 mediates preferential co-associations between genes it regulates.

Journal ArticleDOI
TL;DR: This study reveals global circuitry of the NRF2 stress response emphasizing Nrf2 as a central node in cell survival response and modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs.
Abstract: The Nrf2 (nuclear factor E2 p45-related factor 2) transcription factor responds to diverse oxidative and electrophilic environmental stresses by circumventing repression by Keap1, translocating to the nucleus, and activating cytoprotective genes. Nrf2 responses provide protection against chemical carcinogenesis, chronic inflammation, neurodegeneration, emphysema, asthma and sepsis in murine models. Nrf2 regulates the expression of a plethora of genes that detoxify oxidants and electrophiles and repair or remove damaged macromolecules, such as through proteasomal processing. However, many direct targets of Nrf2 remain undefined. Here, mouse embryonic fibroblasts (MEF) with either constitutive nuclear accumulation (Keap1−/−) or depletion (Nrf2−/−) of Nrf2 were utilized to perform chromatin-immunoprecipitation with parallel sequencing (ChIP-Seq) and global transcription profiling. This unique Nrf2 ChIP-Seq dataset is highly enriched for Nrf2-binding motifs. Integrating ChIP-Seq and microarray analyses, we identified 645 basal and 654 inducible direct targets of Nrf2, with 244 genes at the intersection. Modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs. Results were confirmed in an in vivo stress model of cigarette smoke-exposed mice. This study reveals global circuitry of the Nrf2 stress response emphasizing Nrf2 as a central node in cell survival response.