scispace - formally typeset
Search or ask a question

Showing papers on "Transcription factor published in 2013"


Journal ArticleDOI
07 Nov 2013-Cell
TL;DR: The super-enhancers are large clusters of transcriptional enhancers that drive expression of genes that define cell identity and play key roles in human cell identity in health and in disease as mentioned in this paper.

2,832 citations


Journal ArticleDOI
TL;DR: An overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer is provided.
Abstract: The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore, NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer.

2,404 citations


Journal ArticleDOI
11 Apr 2013-Cell
TL;DR: This work investigates how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition ofThe MYC oncogene in multiple myeloma (MM), and finds that super-enhancers were found at key oncogenic drivers in many other tumor cells.

2,292 citations


01 Apr 2013
TL;DR: It is reported here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state, which consist of clusters of enhancers that are densely occupied by the master regulators and Mediator.
Abstract: Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity.

2,075 citations


Journal ArticleDOI
22 Feb 2013-Science
TL;DR: Two independent mutations within the core promoter of telomerase reverse transcriptase (TERT) are described, which collectively occur in 50 of 70 melanomas examined, suggesting somatic mutations in regulatory regions of the genome may represent an important tumorigenic mechanism.
Abstract: Systematic sequencing of human cancer genomes has identified many recurrent mutations in the protein-coding regions of genes but rarely in gene regulatory regions. Here, we describe two independent mutations within the core promoter of telomerase reverse transcriptase (TERT), the gene coding for the catalytic subunit of telomerase, which collectively occur in 50 of 70 (71%) melanomas examined. These mutations generate de novo consensus binding motifs for E-twenty-six (ETS) transcription factors, and in reporter assays, the mutations increased transcriptional activity from the TERT promoter by two- to fourfold. Examination of 150 cancer cell lines derived from diverse tumor types revealed the same mutations in 24 cases (16%), with preliminary evidence of elevated frequency in bladder and hepatocellular cancer cells. Thus, somatic mutations in regulatory regions of the genome may represent an important tumorigenic mechanism.

1,602 citations


Journal ArticleDOI
22 Feb 2013-Science
TL;DR: A melanoma-prone family through linkage analysis and high-throughput sequencing was investigated and a disease-segregating germline mutation in the promoter of the telomerase reverse transcriptase (TERT) gene, which encodes the catalytic subunit of telomersase, caused up to twofold increase in transcription.
Abstract: Cutaneous melanoma occurs in both familial and sporadic forms. We investigated a melanoma-prone family through linkage analysis and high-throughput sequencing and identified a disease-segregating germline mutation in the promoter of the telomerase reverse transcriptase (TERT) gene, which encodes the catalytic subunit of telomerase. The mutation creates a new binding motif for Ets transcription factors and ternary complex factors (TCFs) near the transcription start and, in reporter gene assays, caused up to twofold increase in transcription. We then screened the TERT promoter in sporadic melanoma and observed recurrent ultraviolet signature somatic mutations in 125 of 168 (74%) of human cell lines derived from metastatic melanomas, 45 of 53 corresponding metastatic tumor tissues (85%), and 25 of 77 (33%) primary melanomas. The majority of those mutations occurred at two positions in the TERT promoter and also generated binding motifs for Ets/TCF transcription factors.

1,557 citations


Journal ArticleDOI
TL;DR: This Review discusses the current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage and how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence.
Abstract: Following pathogen infection or tissue damage, the stimulation of pattern recognition receptors on the cell surface and in the cytoplasm of innate immune cells activates members of each of the major mitogen-activated protein kinase (MAPK) subfamilies--the extracellular signal-regulated kinase (ERK), p38 and Jun N-terminal kinase (JNK) subfamilies. In conjunction with the activation of nuclear factor-κB and interferon-regulatory factor transcription factors, MAPK activation induces the expression of multiple genes that together regulate the inflammatory response. In this Review, we discuss our current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage. We also examine how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence. Finally, we consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases.

1,285 citations


Journal ArticleDOI
TL;DR: It is shown that eIF2α-phosphorylation-attenuated protein synthesis, and not Atf4 mRNA translation, promotes cell survival, and suggesting that limiting protein synthesis will be therapeutic for diseases caused by protein misfolding in the ER.
Abstract: Protein misfolding in the endoplasmic reticulum (ER) leads to cell death through PERK-mediated phosphorylation of eIF2α, although the mechanism is not understood. ChIP-seq and mRNA-seq of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), key transcription factors downstream of p-eIF2α, demonstrated that they interact to directly induce genes encoding protein synthesis and the unfolded protein response, but not apoptosis. Forced expression of ATF4 and CHOP increased protein synthesis and caused ATP depletion, oxidative stress and cell death. The increased protein synthesis and oxidative stress were necessary signals for cell death. We show that eIF2α-phosphorylation-attenuated protein synthesis, and not Atf4 mRNA translation, promotes cell survival. These results show that transcriptional induction through ATF4 and CHOP increases protein synthesis leading to oxidative stress and cell death. The findings suggest that limiting protein synthesis will be therapeutic for diseases caused by protein misfolding in the ER.

1,272 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the interactions between EMT-inducing transcription factors and epigenetic modulators during cancer progression and the therapeutic implications of exploiting this intricate regulatory process is presented.
Abstract: Epithelial-mesenchymal transitions (EMTs) are a key requirement for cancer cells to metastasize and colonize in a new environment. Epithelial-mesenchymal plasticity is mediated by master transcription factors and is also subject to complex epigenetic regulation. This Review outlines our current understanding of the interactions between EMT-inducing transcription factors and epigenetic modulators during cancer progression and the therapeutic implications of exploiting this intricate regulatory process. During the course of malignant cancer progression, neoplastic cells undergo dynamic and reversible transitions between multiple phenotypic states, the extremes of which are defined by the expression of epithelial and mesenchymal phenotypes. This plasticity is enabled by underlying shifts in epigenetic regulation. A small cohort of pleiotropically acting transcription factors is widely recognized to effect these shifts by controlling the expression of a constituency of key target genes. These master regulators depend on complex epigenetic regulatory mechanisms, notably the induction of changes in the modifications of chromatin-associated histones, in order to achieve the widespread changes in gene expression observed during epithelial-mesenchymal transitions (EMTs). These associations indicate that an understanding of the functional interactions between such EMT-inducing transcription factors and the modulators of chromatin configuration will provide crucial insights into the fundamental mechanisms underlying cancer progression and may, in the longer term, generate new diagnostic and therapeutic modalities for treating high-grade malignancies.

939 citations


Journal ArticleDOI
TL;DR: Evidence supporting Keap1-dependent and -independent mechanisms of Nrf2 regulation are dissected, which highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.

872 citations


Journal ArticleDOI
16 Aug 2013-Science
TL;DR: A central role is identified of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response in mice, which is central to antimicrobial defenses.
Abstract: An inducible program of inflammatory gene expression is central to antimicrobial defenses This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1 Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response

Journal ArticleDOI
TL;DR: A novel regulatory role of the eIF2α–ATF4 pathway is revealed in the fine-tuning of the autophagy gene transcription program in response to stresses.
Abstract: In response to different environmental stresses, eIF2α phosphorylation represses global translation coincident with preferential translation of ATF4, a master regulator controlling the transcription of key genes essential for adaptative functions. Here, we establish that the eIF2α/ATF4 pathway directs an autophagy gene transcriptional program in response to amino acid starvation or endoplasmic reticulum stress. The eIF2α-kinases GCN2 and PERK and the transcription factors ATF4 and CHOP are also required to increase the transcription of a set of genes implicated in the formation, elongation and function of the autophagosome. We also identify three classes of autophagy genes according to their dependence on ATF4 and CHOP and the binding of these factors to specific promoter cis elements. Furthermore, different combinations of CHOP and ATF4 bindings to target promoters allow the trigger of a differential transcriptional response according to the stress intensity. Overall, this study reveals a novel regulatory role of the eIF2α–ATF4 pathway in the fine-tuning of the autophagy gene transcription program in response to stresses.

01 Nov 2013
TL;DR: In this article, a review of the interactions between EMT-inducing transcription factors and epigenetic modulators during cancer progression and the therapeutic implications of exploiting this intricate regulatory process is presented.
Abstract: Epithelial-mesenchymal transitions (EMTs) are a key requirement for cancer cells to metastasize and colonize in a new environment. Epithelial-mesenchymal plasticity is mediated by master transcription factors and is also subject to complex epigenetic regulation. This Review outlines our current understanding of the interactions between EMT-inducing transcription factors and epigenetic modulators during cancer progression and the therapeutic implications of exploiting this intricate regulatory process. During the course of malignant cancer progression, neoplastic cells undergo dynamic and reversible transitions between multiple phenotypic states, the extremes of which are defined by the expression of epithelial and mesenchymal phenotypes. This plasticity is enabled by underlying shifts in epigenetic regulation. A small cohort of pleiotropically acting transcription factors is widely recognized to effect these shifts by controlling the expression of a constituency of key target genes. These master regulators depend on complex epigenetic regulatory mechanisms, notably the induction of changes in the modifications of chromatin-associated histones, in order to achieve the widespread changes in gene expression observed during epithelial-mesenchymal transitions (EMTs). These associations indicate that an understanding of the functional interactions between such EMT-inducing transcription factors and the modulators of chromatin configuration will provide crucial insights into the fundamental mechanisms underlying cancer progression and may, in the longer term, generate new diagnostic and therapeutic modalities for treating high-grade malignancies.

Journal ArticleDOI
TL;DR: In this article, the lateral mesoderm-specific lncRNA Fendrr was found to be essential for proper heart and body wall development in the mouse, and the upregulation of several transcription factors was associated with a drastic reduction in PRC2 occupancy along with decreased H3K27 trimethylation.

Journal ArticleDOI
TL;DR: Although these structures only provide snapshots of isolated processes, an emerging picture is that these signaling cascades coalesce into large oligomeric signaling complexes, or signalosomes, for signal propagation.
Abstract: NF-κB (nuclear factor kappa B) family transcription factors are master regulators of immune and inflammatory processes in response to both injury and infection. In the latent state, NF-κBs are sequestered in the cytosol by their inhibitor IκB (inhibitor of NF-κB) proteins. Upon stimulations of innate immune receptors such as Toll-like receptors and cytokine receptors such as those in the TNF (tumor necrosis factor) receptor superfamily, a series of membrane proximal events lead to the activation of the IKK (IκB kinase). Phosphorylation of IκBs results in their proteasomal degradation and the release of NF-κB for nuclear translocation and activation of gene transcription. Here, we review the plethora of structural studies in these NF-κB activation pathways, including the TRAF (TNF receptor–associated factor) proteins, IKK, NF-κB, ubiquitin ligases, and deubiquitinating enzymes. Although these structures only provide snapshots of isolated processes, an emerging picture is that these signaling cascades coale...

Journal ArticleDOI
TL;DR: In this article, the authors discuss the origin and molecular properties of the glucocorticoid receptor (GR) isoforms and their contribution to the specificity and sensitivity of glucoc corticoid signaling in healthy and diseased tissues.
Abstract: Glucocorticoids are primary stress hormones necessary for life that regulate numerous physiologic processes in an effort to maintain homeostasis. Synthetic derivatives of these hormones have been mainstays in the clinic for treating inflammatory diseases, autoimmune disorders, and hematologic cancers. The physiologic and pharmacologic actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. Ligand-occupied GR induces or represses the transcription of thousands of genes through direct binding to DNA response elements, physically associating with other transcription factors, or both. The traditional view that glucocorticoids act through a single GR protein has changed dramatically with the discovery of a large cohort of receptor isoforms with unique expression, gene-regulatory, and functional profiles. These GR subtypes are derived from a single gene by means of alternative splicing and alternative translation initiation mechanisms. Posttranslational modification of these GR isoforms further expands the diversity of glucocorticoid responses. Here we discuss the origin and molecular properties of the GR isoforms and their contribution to the specificity and sensitivity of glucocorticoid signaling in healthy and diseased tissues.

Journal ArticleDOI
TL;DR: MYB TFs are reviewed with particular emphasis on their role in controlling different biological processes to provide valuable insights in understanding regulatory networks and associated functions to develop strategies for crop improvement.
Abstract: Regulation of gene expression at the level of transcription controls many crucial biological processes. Transcription factors (TFs) play a great role in controlling cellular processes and MYB TF family is large and involved in controlling various processes like responses to biotic and abiotic stresses, development, differentiation, metabolism, defense etc. Here, we review MYB TFs with particular emphasis on their role in controlling different biological processes. This will provide valuable insights in understanding regulatory networks and associated functions to develop strategies for crop improvement.

Journal ArticleDOI
TL;DR: This review of transcription factors belonging to the APETALA2/Ethylene Responsive Factor family combines the evidence collected from functional and structural studies to describe their different mechanisms of action and the regulatory pathways that affect their activity.
Abstract: Transcription factors belonging to the APETALA2/Ethylene Responsive Factor (AP2/ERF) family are conservatively widespread in the plant kingdom. These regulatory proteins are involved in the control of primary and secondary metabolism, growth and developmental programs, as well as responses to environmental stimuli. Due to their plasticity and to the specificity of individual members of this family, AP2/ERF transcription factors represent valuable targets for genetic engineering and breeding of crops. In this review, we integrate the evidence collected from functional and structural studies to describe their different mechanisms of action and the regulatory pathways that affect their activity.

Journal ArticleDOI
03 Jul 2013-Cell
TL;DR: It is demonstrated that non-CSCs of human basal breast cancers are plastic cell populations that readily switch from a non- CSC to CSC state, and this findings support a dynamic model in which interconversions between low and high tumorigenic states occur frequently, thereby increasing tumorigenics and malignant potential.

Journal ArticleDOI
TL;DR: It is demonstrated that MALAT1 levels are regulated during normal cell cycle progression, and mechanistic insights on the role of MALat1 in regulating cellular proliferation are provided.
Abstract: The long noncoding MALAT1 RNA is upregulated in cancer tissues and its elevated expression is associated with hyper-proliferation, but the underlying mechanism is poorly understood. We demonstrate that MALAT1 levels are regulated during normal cell cycle progression. Genome-wide transcriptome analyses in normal human diploid fibroblasts reveal that MALAT1 modulates the expression of cell cycle genes and is required for G1/S and mitotic progression. Depletion of MALAT1 leads to activation of p53 and its target genes. The cell cycle defects observed in MALAT1-depleted cells are sensitive to p53 levels, indicating that p53 is a major downstream mediator of MALAT1 activity. Furthermore, MALAT1-depleted cells display reduced expression of B-MYB (Mybl2), an oncogenic transcription factor involved in G2/M progression, due to altered binding of splicing factors on B-MYB pre-mRNA and aberrant alternative splicing. In human cells, MALAT1 promotes cellular proliferation by modulating the expression and/or pre-mRNA processing of cell cycle–regulated transcription factors. These findings provide mechanistic insights on the role of MALAT1 in regulating cellular proliferation.

Journal ArticleDOI
TL;DR: The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.
Abstract: Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.

Journal ArticleDOI
TL;DR: An overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses is presented and it is reviewed that their overexpression can improve stress tolerance via biotechnological approaches.
Abstract: NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins.

Journal ArticleDOI
TL;DR: An essential role of enhancer transcription in H3K4me1/2 deposition at de novo enhancers that is independent of potential functions of the resulting eRNA transcripts is suggested.

Journal ArticleDOI
29 Aug 2013-Nature
TL;DR: Together, these results indicate that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumours.
Abstract: Although recent studies have indicated roles of long non-coding RNAs (lncRNAs) in physiological aspects of cell-type determination and tissue homeostasis, their potential involvement in regulated gene transcription programs remains rather poorly understood. The androgen receptor regulates a large repertoire of genes central to the identity and behaviour of prostate cancer cells, and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy. Here we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 (also known as PCAT8) and PCGEM1, bind successively to the androgen receptor and strongly enhance both ligand-dependent and ligand-independent androgen-receptor-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the carboxy-terminally acetylated androgen receptor on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the androgen receptor amino terminus that is methylated by DOT1L. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited pygopus 2 PHD domain enhances selective looping of androgen-receptor-bound enhancers to target gene promoters in these cells. In 'resistant' prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full-length androgen receptor, causing ligand-independent activation of the androgen receptor transcriptional program and cell proliferation. Conditionally expressed short hairpin RNA targeting these lncRNAs in castration-resistant prostate cancer cell lines strongly suppressed tumour xenograft growth in vivo. Together, these results indicate that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumours.

Journal ArticleDOI
TL;DR: The connections between mTORC1 and gene transcription are reviewed by focusing on its impact in regulating the activation of specific transcription factors including including STAT3, SREBPs, PParγ, PPARα, HIF1α, YY1–PGC1α and TFEB.
Abstract: The mechanistic (or mammalian) target of rapamycin (mTOR) is a kinase that regulates key cellular functions linked to the promotion of cell growth and metabolism. This kinase, which is part of two protein complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2), has a fundamental role in coordinating anabolic and catabolic processes in response to growth factors and nutrients. Of the two mTOR complexes, mTORC1 is by far the best characterized. When active, mTORC1 triggers cell growth and proliferation by promoting protein synthesis, lipid biogenesis, and metabolism, and by reducing autophagy. The fact that mTORC1 deregulation is associated with several human diseases, such as type 2 diabetes, cancer, obesity and neurodegeneration, highlights its importance in the maintenance of cellular homeostasis. Over the last years, several groups observed that mTORC1 inhibition, in addition to reducing protein synthesis, deeply affects gene transcription. Here, we review the connections between mTORC1 and gene transcription by focusing on its impact in regulating the activation of specific transcription factors including including STAT3, SREBPs, PPARγ, PPARα, HIF1α, YY1–PGC1α and TFEB. We also discuss the importance of these transcription factors in mediating the effects of mTORC1 on various cellular processes in physiological and pathological contexts.

Journal ArticleDOI
TL;DR: The functional complexities of FOX proteins are coming to light and have established these transcription factors as possible therapeutic targets and putative biomarkers for specific cancers.
Abstract: Forkhead box (FOX) proteins are multifaceted transcription factors that are responsible for fine-tuning the spatial and temporal expression of a broad range of genes both during development and in adult tissues. This function is engrained in their ability to integrate a multitude of cellular and environmental signals and to act with remarkable fidelity. Several key members of the FOXA, FOXC, FOXM, FOXO and FOXP subfamilies are strongly implicated in cancer, driving initiation, maintenance, progression and drug resistance. The functional complexities of FOX proteins are coming to light and have established these transcription factors as possible therapeutic targets and putative biomarkers for specific cancers.

Journal ArticleDOI
11 Oct 2013-Science
TL;DR: It is found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature, illustrating how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression.
Abstract: Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the β-hemoglobinopathies.

Journal ArticleDOI
TL;DR: Key genes involved in ribosomal and mitochondrial biogenesis, glucose and glutamine metabolism, lipid synthesis, and cell-cycle progression are robustly activated by MYC, contributing to the acquisition of bioenergetics substrates for the cancer cell to grow and proliferate.
Abstract: The MYC proto-oncogene is frequently activated in human cancers through a variety of mechanisms. Its deregulated expression, unconstrained by inactivation of key checkpoints, such as p53, contributes to tumorigenesis. Unlike its normal counterpart, which is restrained by negative regulators, the unleashed MYC oncogene produces a transcription factor that alters global gene expression through transcriptional regulation, resulting in tumorigenesis. Key genes involved in ribosomal and mitochondrial biogenesis, glucose and glutamine metabolism, lipid synthesis, and cell-cycle progression are robustly activated by MYC, contributing to the acquisition of bioenergetics substrates for the cancer cell to grow and proliferate.

Journal ArticleDOI
24 Oct 2013-Cell
TL;DR: A precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.

Journal ArticleDOI
TL;DR: This review will focus on the last progress in ubiquitin-proteasome and autophagy-lysosome systems and their involvement in muscle atrophy.