scispace - formally typeset
Search or ask a question
Topic

Transcription factor

About: Transcription factor is a research topic. Over the lifetime, 82881 publications have been published within this topic receiving 5400448 citations. The topic is also known as: transcription factors.


Papers
More filters
Journal ArticleDOI
15 Dec 2000-Science
TL;DR: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms and reveals the evolutionary generation of diversity in the regulation of transcription.
Abstract: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

2,582 citations

Journal ArticleDOI
TL;DR: A functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by Hypoxia via de novo protein synthesis.
Abstract: We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48 Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis

2,523 citations

Journal ArticleDOI
13 Jun 2008-Cell
TL;DR: This study uses chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing to map the locations of TF-binding sites and identifies important features of the transcriptional regulatory networks that define ES-cell identity.

2,519 citations

Journal ArticleDOI
01 Nov 1996-Science
TL;DR: In this paper, the sensitivity and kinetics of TNF-α-induced apoptosis were shown to be enhanced in a number of cell types expressing a dominant negative IkappaBalpha (Ikappa-BalphaM).
Abstract: Tumor necrosis factor alpha (TNF-alpha) signaling gives rise to a number of events, including activation of transcription factor NF-kappaB and programmed cell death (apoptosis). Previous studies of TNF-alpha signaling have suggested that these two events occur independently. The sensitivity and kinetics of TNF-alpha-induced apoptosis are shown to be enhanced in a number of cell types expressing a dominant-negative IkappaBalpha (IkappaBalphaM). These findings suggest that a negative feedback mechanism results from TNF-alpha signaling in which NF-kappaB activation suppresses the signals for cell death.

2,515 citations

Journal ArticleDOI
TL;DR: Examining the expression patterns of large gene families, it is found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.
Abstract: Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.

2,510 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
98% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene expression
113.3K papers, 5.5M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Protein kinase A
68.4K papers, 3.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,678
20226,545
20213,663
20203,530
20193,362
20183,288