scispace - formally typeset
Search or ask a question
Topic

Transcription factor

About: Transcription factor is a research topic. Over the lifetime, 82881 publications have been published within this topic receiving 5400448 citations. The topic is also known as: transcription factors.


Papers
More filters
Journal ArticleDOI
23 Jun 2006-Science
TL;DR: It is reported that the signal-dependent activation of gene transcription by nuclear receptors and other classes of DNA binding transcription factors, including activating protein 1, requires DNA topoisomerase IIβ-dependent, transient, site-specific dsDNA break formation.
Abstract: Multiple enzymatic activities are required for transcriptional initiation. The enzyme DNA topoisomerase II associates with gene promoter regions and can generate breaks in double-stranded DNA (dsDNA). Therefore, it is of interest to know whether this enzyme is critical for regulated gene activation. We report that the signal-dependent activation of gene transcription by nuclear receptors and other classes of DNA binding transcription factors, including activating protein 1, requires DNA topoisomerase IIbeta-dependent, transient, site-specific dsDNA break formation. Subsequent to the break, poly(adenosine diphosphate-ribose) polymerase-1 enzymatic activity is induced, which is required for a nucleosome-specific histone H1-high-mobility group B exchange event and for local changes of chromatin architecture. Our data mechanistically link DNA topoisomerase IIbeta-dependent dsDNA breaks and the components of the DNA damage and repair machinery in regulated gene transcription.

801 citations

Journal ArticleDOI
TL;DR: It is reported that expression of the transcription factors Sox1, Sox2 and Sox3 (Sox1–3) is a critical determinant of neurogenesis and the generation of neurons from stem cells depends on the inhibition of Sox1-3 expression by proneural proteins.
Abstract: The generation of neurons from stem cells involves the activity of proneural basic helix-loop-helix (bHLH) proteins, but the mechanism by which these proteins irreversibly commit stem cells to neuronal differentiation is not known. Here we report that expression of the transcription factors Sox1, Sox2 and Sox3 (Sox1-3) is a critical determinant of neurogenesis. Using chick in ovo electroporation, we found that Sox1-3 transcription factors keep neural cells undifferentiated by counteracting the activity of proneural proteins. Conversely, the capacity of proneural bHLH proteins to direct neuronal differentiation critically depends on their ability to suppress Sox1-3 expression in CNS progenitors. These data suggest that the generation of neurons from stem cells depends on the inhibition of Sox1-3 expression by proneural proteins.

801 citations

Journal ArticleDOI
TL;DR: It is concluded that MCT4, like other glycolytic enzymes, is up-regulated by hypoxia through a HIF-1α-mediated mechanism, which allows the increased lactic acid produced during Hypoxia to be rapidly lost from the cell.

800 citations

Journal ArticleDOI
TL;DR: Analysis of the results of a series of deletions revealed that the C-terminal 35 amino acids of NtERF3 are sufficient to confer the capacity for repression of transcription on a heterologous DNA binding domain, and this repression domain suppressed the intermolecular activities of other transcriptional activators.
Abstract: We reported previously that three ERF transcription factors, tobacco ERF3 (NtERF3) and Arabidopsis AtERF3 and AtERF4, which are categorized as class II ERFs, are active repressors of transcription. To clarify the roles of these repressors in transcriptional regulation in plants, we attempted to identify the functional domains of the ERF repressor that mediates the repression of transcription. Analysis of the results of a series of deletions revealed that the C-terminal 35 amino acids of NtERF3 are sufficient to confer the capacity for repression of transcription on a heterologous DNA binding domain. This repression domain suppressed the intermolecular activities of other transcriptional activators. In addition, fusion of this repression domain to the VP16 activation domain completely inhibited the transactivation function of VP16. Comparison of amino acid sequences of class II ERF repressors revealed the conservation of the sequence motif L / F DLN L / F (x)P. This motif was essential for repression because mutations within the motif eliminated the capacity for repression. We designated this motif the ERF-associated amphiphilic repression (EAR) motif, and we identified this motif in a number of zinc-finger proteins from wheat, Arabidopsis, and petunia plants. These zinc finger proteins functioned as repressors, and their repression domains were identified as regions that contained an EAR motif.

799 citations

Journal ArticleDOI
TL;DR: It is reported that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele.
Abstract: The sonic hedgehog (SHH) signaling pathway directs the embryonic development of diverse organisms and is disrupted in a variety of malignancies. Pathway activation is triggered by binding of hedgehog proteins to the multipass Patched-1 (PTCH) receptor, which in the absence of hedgehog suppresses the activity of the seven-pass membrane protein Smoothened (SMOH). De-repression of SMOH culminates in the activation of one or more of the GLI transcription factors that regulate the transcription of downstream targets. Individuals with germline mutations of the SHH receptor gene PTCH are at high risk of developmental anomalies and of basal-cell carcinomas, medulloblastomas and other cancers (a pattern consistent with nevoid basal-cell carcinoma syndrome, NBCCS). In keeping with the role of PTCH as a tumor-suppressor gene, somatic mutations of this gene occur in sporadic basal-cell carcinomas and medulloblastomas. We report here that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele. Several of these mutations encode truncated proteins that are unable to export the GLI transcription factor from nucleus to cytoplasm, resulting in the activation of SHH signaling. SUFU is a newly identified tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway through a newly identified mechanism.

799 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
98% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene expression
113.3K papers, 5.5M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Protein kinase A
68.4K papers, 3.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,678
20226,545
20213,663
20203,530
20193,362
20183,288