scispace - formally typeset
Search or ask a question
Topic

Transcription factor

About: Transcription factor is a research topic. Over the lifetime, 82881 publications have been published within this topic receiving 5400448 citations. The topic is also known as: transcription factors.


Papers
More filters
Journal ArticleDOI
TL;DR: In transgenic mouse embryos, N-terminally truncated Gli2, unlike the full length protein, activates a Shh target gene, HNF3beta, in the dorsal neural tube, thus mimicking the effect of Shh signal, which suggests that unmasking of the strong activation potential of Gli 2 through modulation of the N-Terminal repression domain is one of the key mechanisms of the Shh signaling.
Abstract: Gli family zinc finger proteins are mediators of Sonic hedgehog (Shh) signaling in vertebrates. The question remains unanswered, however, as to how these Gli proteins participate in the Shh signaling pathway. In this study, regulatory activities associated with the Gli2 protein were investigated in relation to the Shh signaling. Although Gli2 acts as a weak transcriptional activator, it is in fact a composite of positive and negative regulatory domains. In cultured cells, truncation of the activation domain in the C-terminal half results in a protein with repressor activity, while removal of the repression domain at the N terminus converts Gli2 into a strong activator. In transgenic mouse embryos, N-terminally truncated Gli2, unlike the full length protein, activates a Shh target gene, HNF3beta, in the dorsal neural tube, thus mimicking the effect of Shh signal. This suggests that unmasking of the strong activation potential of Gli2 through modulation of the N-terminal repression domain is one of the key mechanisms of the Shh signaling. A similar regulatory mechanism involving the N-terminal region was also found for Gli3, but not for Gli1. When the Shh signal derived from the notochord is received by the neural plate, the widely expressed Gli2 and Gli3 proteins are presumably converted to their active forms in the ventral cells, leading to activation of transcription of their target genes, including Gli1.

732 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the UPR is an important mediator of the hypoxic tumor microenvironment and that it contributes to resistance to treatment through its ability to facilitate autophagy.
Abstract: Tumor hypoxia is a common microenvironmental factor that adversely influences tumor phenotype and treatment response. Cellular adaptation to hypoxia occurs through multiple mechanisms, including activation of the unfolded protein response (UPR). Recent reports have indicated that hypoxia activates a lysosomal degradation pathway known as autophagy, and here we show that the UPR enhances the capacity of hypoxic tumor cells to carry out autophagy, and that this promotes their survival. In several human cancer cell lines, hypoxia increased transcription of the essential autophagy genes microtubule-associated protein 1 light chain 3beta (MAP1LC3B) and autophagy-related gene 5 (ATG5) through the transcription factors ATF4 and CHOP, respectively, which are regulated by PKR-like ER kinase (PERK, also known as EIF2AK3). MAP1LC3B and ATG5 are not required for initiation of autophagy but mediate phagophore expansion and autophagosome formation. We observed that transcriptional induction of MAP1LC3B replenished MAP1LC3B protein that was turned over during extensive hypoxia-induced autophagy. Correspondingly, cells deficient in PERK signaling failed to transcriptionally induce MAP1LC3B and became rapidly depleted of MAP1LC3B protein during hypoxia. Consistent with these data, autophagy and MAP1LC3B induction occurred preferentially in hypoxic regions of human tumor xenografts. Furthermore, pharmacological inhibition of autophagy sensitized human tumor cells to hypoxia, reduced the fraction of viable hypoxic tumor cells, and sensitized xenografted human tumors to irradiation. Our data therefore demonstrate that the UPR is an important mediator of the hypoxic tumor microenvironment and that it contributes to resistance to treatment through its ability to facilitate autophagy.

732 citations

Journal ArticleDOI
TL;DR: It is shown that transcription of the gene encoding Nip3, a proapoptotic member of the Bcl-2 family of cell death factors, is strongly induced in response to hypoxia, indicating that Nip 3 may play a dedicated role in the pathological progression ofHypoxia-mediated apoptosis, as observed after ischemic injury.
Abstract: The ability to sense and respond to changes in oxygen availability is critical for many developmental, physiological, and pathological processes, including angiogenesis, control of blood pressure, and cerebral and myocardial ischemia. Hypoxia-inducible factor-1α (HIF-1α) is a basic-helix–loop–helix (bHLH)containing member of the PER–ARNT–SIM (PAS) family of transcription factors that plays a central role in the response to hypoxia. HIF-1α, and its relatives HIF-2α/endothelial PAS domain protein (EPAS) and HIF-3α, are induced in response to hypoxia and serve to coordinately activate the expression of target genes whose products facilitate cell survival under conditions of oxygen deprivation. When cells are exposed to chronic hypoxia, the protective response can fail, resulting in apoptosis. This study shows that transcription of the gene encoding Nip3, a proapoptotic member of the Bcl-2 family of cell death factors, is strongly induced in response to hypoxia. The Nip3 promoter contains a functional HIF-1-responsive element (HRE) and is potently activated by both hypoxia and forced expression of HIF-1α. Exposure of cultured cells to chronic hypoxia results in the accumulation of a protein recognized by antibodies raised against Nip3. This study demonstrates a direct link between HIF-1α and a proapoptotic member of the Bcl-2 family and offers a reasonable physiological function for members of the Bcl-2 subfamily, including Nip3 and its close relative Nix. These observations indicate that Nip3 may play a dedicated role in the pathological progression of hypoxia-mediated apoptosis, as observed after ischemic injury.

730 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the origin and molecular properties of the glucocorticoid receptor (GR) isoforms and their contribution to the specificity and sensitivity of glucoc corticoid signaling in healthy and diseased tissues.
Abstract: Glucocorticoids are primary stress hormones necessary for life that regulate numerous physiologic processes in an effort to maintain homeostasis. Synthetic derivatives of these hormones have been mainstays in the clinic for treating inflammatory diseases, autoimmune disorders, and hematologic cancers. The physiologic and pharmacologic actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. Ligand-occupied GR induces or represses the transcription of thousands of genes through direct binding to DNA response elements, physically associating with other transcription factors, or both. The traditional view that glucocorticoids act through a single GR protein has changed dramatically with the discovery of a large cohort of receptor isoforms with unique expression, gene-regulatory, and functional profiles. These GR subtypes are derived from a single gene by means of alternative splicing and alternative translation initiation mechanisms. Posttranslational modification of these GR isoforms further expands the diversity of glucocorticoid responses. Here we discuss the origin and molecular properties of the GR isoforms and their contribution to the specificity and sensitivity of glucocorticoid signaling in healthy and diseased tissues.

730 citations

Journal ArticleDOI
TL;DR: It is demonstrated that c-Myc is a potent transactivator of ODC promoter-reporter gene constructs in fibroblasts that requires the CACGTG repeat, suggesting that ODC is regulated by Myc at the level of transcription initiation.
Abstract: Constitutive c-myc expression suppresses cell cycle arrest, promotes entry into S phase, and results in the growth factor-independent expression of ornithine decarboxylase (ODC; EC 4.1.1.17). The ODC gene contains a conserved repeat of the Myc binding site, CACGTG, in intron 1. In this report, we demonstrate that c-Myc is a potent transactivator of ODC promoter-reporter gene constructs in fibroblasts that requires the CACGTG repeat. These sites conferred Myc responsiveness on heterologous promoter constructs, suggesting that ODC is regulated by Myc at the level of transcription initiation. Analysis of deletion and point mutants of c-myc revealed that domains required for transactivation of the ODC promoter did not include the leucine zipper of the Myc protein. This suggests that Myc may interact with transcription factors other than Max to transactivate the ODC gene.

730 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
98% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene expression
113.3K papers, 5.5M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Protein kinase A
68.4K papers, 3.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,678
20226,545
20213,663
20203,530
20193,362
20183,288