scispace - formally typeset
Search or ask a question
Topic

Transcription factor

About: Transcription factor is a research topic. Over the lifetime, 82881 publications have been published within this topic receiving 5400448 citations. The topic is also known as: transcription factors.


Papers
More filters
Journal ArticleDOI
30 Apr 2001-Oncogene
TL;DR: Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins, including opposite orientations of heterodimer binding and the ability to bend DNA.
Abstract: Fos and Jun family proteins regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with related bZIP proteins and with structurally unrelated transcription factors. These interactions at composite regulatory elements produce nucleoprotein complexes with high sequence-specificity and regulatory selectivity. Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins. The structural properties of Fos-Jun family proteins including opposite orientations of heterodimer binding and the ability to bend DNA can contribute to the assembly and functions of such complexes. The cooperative recruitment of transcription factors, coactivators and chromatin remodeling factors to promoter and enhancer regions generates multiprotein transcription regulatory complexes with cell- and stimulus-specific transcriptional activities. The gene-specific architecture of these complexes can mediate the selective control of transcriptional activity.

708 citations

Journal ArticleDOI
09 Dec 1988-Science
TL;DR: The putative DNA-binding domain of CREB is structurally similar to the corresponding domains in the phorbol ester-responsive c-jun protein and the yeast transcription factor GCN4.
Abstract: Cyclic AMP (cAMP) is an intracellular second messenger that activates transcription of many cellular genes. A palindromic consensus DNA sequence, TGACGTCA, functions as a cAMP-responsive transcriptional enhancer (CRE). The CRE binds a cellular protein of 38 kD in placental JEG-3 cells. A placental lambda gt11 library was screened for expression of specific CRE-binding proteins with the CRE sequence as a radioactive probe. A cDNA encoding a protein of 326 amino acids with the binding properties of a specific CRE-binding protein (CREB) was isolated. The protein contains a COOH-terminal basic region adjacent to a sequence similar to the "leucine zipper" sequence believed to be involved in DNA binding and in protein-protein contacts in several other DNA-associated transcriptional proteins including the products of the c-myc, c-fos, and c-jun oncogenes and GCN4. The CREB protein also contains an NH2-terminal acidic region proposed to be a potential transcriptional activation domain. The putative DNA-binding domain of CREB is structurally similar to the corresponding domains in the phorbol ester-responsive c-jun protein and the yeast transcription factor GCN4.

707 citations

Journal ArticleDOI
TL;DR: This review highlights the cytoprotective gene expression induced by some representative dietary chemopreventive phytochemicals with the Nrf2-Keap1 system as a prime molecular target.
Abstract: A wide array of dietary phytochemicals have been reported to induce the expression of enzymes involved in both cellular antioxidant defenses and elimination/inactivation of electrophilic carcinogens. Induction of such cytoprotective enzymes by edible phytochemicals largely accounts for their cancer chemopreventive and chemoprotective activities. Nuclear factor-erythroid-2-related factor 2 (Nrf2) plays a crucial role in the coordinated induction of those genes encoding many stress-responsive and cytoptotective enzymes and related proteins. These include NAD(P)H:quinone oxidoreductase-1, heme oxygenase-1, glutamate cysteine ligase, glutathione S-transferase, glutathione peroxidase, thioredoxin, etc. In resting cells, Nrf2 is sequestered in the cytoplasm as an inactive complex with the repressor Kelch-like ECH-associated protein 1 (Keap1). The release of Nrf2 from its repressor is most likely to be achieved by alterations in the structure of Keap1. Keap1 contains several reactive cysteine residues that function as sensors of cellular redox changes. Oxidation or covalent modification of some of these critical cysteine thiols would stabilize Nrf2, thereby facilitating nuclear accumulation of Nrf2. After translocation into nucleus, Nrf2 forms a heterodimer with other transcription factors, such as small Maf, which in turn binds to the 5'-upstream CIS-acting regulatory sequence, termed antioxidant response elements (ARE) or electrophile response elements (EpRE), located in the promoter region of genes encoding various antioxidant and phase 2 detoxifying enzymes. Certain dietary chemopreventive agents target Keap1 by oxidizing or chemically modifying one or more of its specific cysteine thiols, thereby stabilizing Nrf2. In addition, phosphorylation of specific serine or threonine residues present in Nrf2 by upstream kinases may also facilitate the nuclear localization of Nrf2. Multiple mechanisms of Nrf2 activation by signals mediated by one or more of the upstream kinases, such as mitogen-activated protein kinases, phosphatidylionositol-3-kinase/Akt, protein kinase C, and casein kinase-2 have recently been proposed. This review highlights the cytoprotective gene expression induced by some representative dietary chemopreventive phytochemicals with the Nrf2-Keap1 system as a prime molecular target.

707 citations

Journal ArticleDOI
TL;DR: It is shown that DC activation induced by lipopolysaccharide can be separated into two distinct processes: first, maturation, leading to upregulation of MHC and costimulatory molecules, and second, rescue from immediate apoptosis after withdrawal of growth factors (survival).
Abstract: Although dendritic cell (DC) activation is a critical event for the induction of immune responses, the signaling pathways involved in this process have not been characterized. In this report, we show that DC activation induced by lipopolysaccharide (LPS) can be separated into two distinct processes: first, maturation, leading to upregulation of MHC and costimulatory molecules, and second, rescue from immediate apoptosis after withdrawal of growth factors (survival). Using a DC culture system that allowed us to propagate immature growth factor–dependent DCs, we have investigated the signaling pathways activated by LPS. We found that LPS induced nuclear translocation of the nuclear factor (NF)-κB transcription factor. Inhibition of NF-κB activation blocked maturation of DCs in terms of upregulation of major histocompatibility complex and costimulatory molecules. In addition, we found that LPS activated the extracellular signal–regulated kinase (ERK), and that specific inhibition of MEK1, the kinase which activates ERK, abrogated the ability of LPS to prevent apoptosis but did not inhibit DC maturation or NF-κB nuclear translocation. These results indicate that ERK and NF-κB regulate different aspects of LPS-induced DC activation: ERK regulates DC survival whereas NF-κB is responsible for DC maturation.

706 citations

Journal ArticleDOI
TL;DR: Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Abstract: The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it) These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements

705 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
98% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene expression
113.3K papers, 5.5M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Protein kinase A
68.4K papers, 3.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,678
20226,545
20213,663
20203,530
20193,362
20183,288