scispace - formally typeset
Search or ask a question
Topic

Transcription factor

About: Transcription factor is a research topic. Over the lifetime, 82881 publications have been published within this topic receiving 5400448 citations. The topic is also known as: transcription factors.


Papers
More filters
Journal ArticleDOI
08 Aug 1996-Nature
TL;DR: Findings indicate that cdc25A is a physiologically relevant transcriptional target of c-myc, a proto-oncogene that can promote either oncogenic transformation or apoptosis in cells depleted of growth factor.
Abstract: The product of the proto-oncogene c-myc, in partnership with Max, forms a transcription factor that can promote either oncogenic transformation or apoptosis. The Myc/Max heterodimer binds to elements in the cdc25A gene and activates transcription. Like myc, cdc25A, itself a proto-oncogene, can induce apoptosis in cells depleted of growth factor, and Myc-induced apoptosis also requires cdc25A. These findings indicate that cdc25A is a physiologically relevant transcriptional target of c-myc.

703 citations

Journal ArticleDOI
TL;DR: The identification of the essential gene Fe-deficiency Induced Transcription Factor 1 (FIT1), which encodes a putative transcription factor that regulates iron uptake responses in Arabidopsis thaliana, and a new model for iron uptake inArabidopsis where FRO2 and IRT1 are differentially regulated by FIT1.
Abstract: Regulation of iron uptake is critical for plant survival. Although the activities responsible for reduction and transport of iron at the plant root surface have been described, the genes controlling these activities are largely unknown. We report the identification of the essential gene Fe-deficiency Induced Transcription Factor 1 (FIT1), which encodes a putative transcription factor that regulates iron uptake responses in Arabidopsis thaliana. Like the Fe(III) chelate reductase FRO2 and high affinity Fe(II) transporter IRT1, FIT1 mRNA is detected in the outer cell layers of the root and accumulates in response to iron deficiency. fit1 mutant plants are chlorotic and die as seedlings but can be rescued by the addition of supplemental iron, pointing to a defect in iron uptake. fit1 mutant plants accumulate less iron than wild-type plants in root and shoot tissues. Microarray analysis shows that expression of many (72 of 179) iron-regulated genes is dependent on FIT1. We demonstrate that FIT1 regulates FRO2 at the level of mRNA accumulation and IRT1 at the level of protein accumulation. We propose a new model for iron uptake in Arabidopsis where FRO2 and IRT1 are differentially regulated by FIT1.

702 citations

Journal ArticleDOI
22 Aug 2014-Science
TL;DR: A high-sensitivity indexing-first chromatin immunoprecipitation approach to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation and reveals that lineage commitment involves de novo establishment of 17,035 lineage-specific enhancers.
Abstract: Chromatin modifications are crucial for development, yet little is known about their dynamics during differentiation. Hematopoiesis provides a well-defined model to study chromatin state dynamics; however, technical limitations impede profiling of homogeneous differentiation intermediates. We developed a high-sensitivity indexing-first chromatin immunoprecipitation approach to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation. We identify 48,415 enhancer regions and characterize their dynamics. We find that lineage commitment involves de novo establishment of 17,035 lineage-specific enhancers. These enhancer repertoire expansions foreshadow transcriptional programs in differentiated cells. Combining our enhancer catalog with gene expression profiles, we elucidate the transcription factor network controlling chromatin dynamics and lineage specification in hematopoiesis. Together, our results provide a comprehensive model of chromatin dynamics during development.

702 citations

Journal ArticleDOI
07 Mar 2008-Science
TL;DR: It is shown that TOPLESS (TPL) can physically interact with IAA12/BODENLOS (IAA12/BDL) through an ETHYLENE RESPONSE FACTOR (ERF)–associated amphiphilic repression (EAR) motif and is a transcriptional co-repressor and further the understanding of how auxin regulates transcription during plant development.
Abstract: The transcriptional response to auxin is critical for root and vascular development during Arabidopsis embryogenesis. Auxin induces the degradation of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors, freeing their binding partners, the AUXIN RESPONSE FACTOR (ARF) proteins, which can activate transcription of auxin response genes. We show that TOPLESS (TPL) can physically interact with IAA12/BODENLOS (IAA12/BDL) through an ETHYLENE RESPONSE FACTOR (ERF)-associated amphiphilic repression (EAR) motif. TPL can repress transcription in vivo and is required for IAA12/BDL repressive activity. In addition, tpl-1 can suppress the patterning defects of the bdl-1 mutant. Direct interaction between TPL and ARF5/MONOPTEROS, which is regulated by IAA12/BDL, results in a loss-of-function arf5/mp phenotype. These observations show that TPL is a transcriptional co-repressor and further our understanding of how auxin regulates transcription during plant development.

701 citations

Journal ArticleDOI
TL;DR: A global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 is provided and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance.
Abstract: To understand the gene network controlling tolerance to cold stress, we performed an Arabidopsis thaliana genome transcript expression profile using Affymetrix GeneChips that contain ∼24,000 genes. We statistically determined 939 cold-regulated genes with 655 upregulated and 284 downregulated. A large number of early cold-responsive genes encode transcription factors that likely control late-responsive genes, suggesting a multitude of transcriptional cascades. In addition, many genes involved in chromatin level and posttranscriptional regulation were also cold regulated, suggesting their involvement in cold-responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid, and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of the wild type and inducer of CBF expression 1 (ice1), a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance.

700 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
98% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene expression
113.3K papers, 5.5M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Protein kinase A
68.4K papers, 3.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,678
20226,545
20213,663
20203,530
20193,362
20183,288