scispace - formally typeset
Search or ask a question
Topic

Transcription factor

About: Transcription factor is a research topic. Over the lifetime, 82881 publications have been published within this topic receiving 5400448 citations. The topic is also known as: transcription factors.


Papers
More filters
Journal ArticleDOI
21 Sep 1990-Cell
TL;DR: Evidence is presented that the glucocorticoid receptor (GR) and transcription factor Jun/AP-1 can reciprocally repress one another's transcriptional activation by a novel mechanism that is independent of DNA binding.

1,241 citations

Journal ArticleDOI
TL;DR: AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.
Abstract: The AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer. However, emerging evidence indicates that the contribution of AP-1 to determination of cell fates critically depends on the relative abundance of AP-1 subunits, the composition of AP-1 dimers, the quality of stimulus, the cell type and the cellular environment. Therefore, AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.

1,227 citations

Journal ArticleDOI
TL;DR: Results implicate Nrf2 in the induction of the HO-1 gene but suggest that the NRF2 partner in this function is a factor other than p18 or Jun proteins.

1,226 citations

Journal ArticleDOI
TL;DR: The identification of several new loci involved in JA signaling and the characterization and positional cloning of one of them, JASMONATE-INSENSITIVE1 (JAI1/JIN1), a nuclear-localized basic helix-loop-helix-leucine zipper transcription factor whose expression is rapidly upregulated by JA, are described.
Abstract: In spite of the importance of jasmonates (JAs) as plant growth and stress regulators, the molecular components of their signaling pathway remain largely unknown. By means of a genetic screen that exploits the cross talk between ethylene (ET) and JAs, we describe the identification of several new loci involved in JA signaling and the characterization and positional cloning of one of them, JASMONATE-INSENSITIVE1 (JAI1/JIN1). JIN1 encodes AtMYC2, a nuclear-localized basic helix-loop-helix-leucine zipper transcription factor, whose expression is rapidly upregulated by JA, in a CORONATINE INSENSITIVE1–dependent manner. Gain-of-function experiments confirmed the relevance of AtMYC2 in the activation of JA signaling. AtMYC2 differentially regulates the expression of two groups of JA-induced genes. The first group includes genes involved in defense responses against pathogens and is repressed by AtMYC2. Consistently, jin1 mutants show increased resistance to necrotrophic pathogens. The second group, integrated by genes involved in JA-mediated systemic responses to wounding, is activated by AtMYC2. Conversely, Ethylene-Response-Factor1 (ERF1) positively regulates the expression of the first group of genes and represses the second. These results highlight the existence of two branches in the JA signaling pathway, antagonistically regulated by AtMYC2 and ERF1, that are coincident with the alternative responses activated by JA and ET to two different sets of stresses, namely pathogen attack and wounding.

1,222 citations

Journal ArticleDOI
14 Nov 2005-Oncogene
TL;DR: Consistent with the notion that stress resistance is highly coupled with lifespan extension, activation of FOXO transcription factors in worms and flies increases longevity and suggests that FOXO factors play a tumor suppressor role in a variety of cancers.
Abstract: A wide range of human diseases, including cancer, has a striking age-dependent onset. However, the molecular mechanisms that connect aging and cancer are just beginning to be unraveled. FOXO transcription factors are promising candidates to serve as molecular links between longevity and tumor suppression. These factors are major substrates of the protein kinase Akt. In the presence of insulin and growth factors, FOXO proteins are relocalized from the nucleus to the cytoplasm and degraded via the ubiquitin-proteasome pathway. In the absence of growth factors, FOXO proteins translocate to the nucleus and upregulate a series of target genes, thereby promoting cell cycle arrest, stress resistance, or apoptosis. Stress stimuli also trigger the relocalization of FOXO factors into the nucleus, thus allowing an adaptive response to stress stimuli. Consistent with the notion that stress resistance is highly coupled with lifespan extension, activation of FOXO transcription factors in worms and flies increases longevity. Emerging evidence also suggests that FOXO factors play a tumor suppressor role in a variety of cancers. Thus, FOXO proteins translate environmental stimuli into changes in gene expression programs that may coordinate organismal longevity and tumor suppression.

1,222 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
98% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene expression
113.3K papers, 5.5M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Protein kinase A
68.4K papers, 3.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,678
20226,545
20213,663
20203,530
20193,362
20183,288