scispace - formally typeset
Search or ask a question
Topic

Transcription factor

About: Transcription factor is a research topic. Over the lifetime, 82881 publications have been published within this topic receiving 5400448 citations. The topic is also known as: transcription factors.


Papers
More filters
Journal ArticleDOI
07 Nov 1997-Science
TL;DR: The insights gained from studies of translocation-generated oncogenes and their protein products should hasten the development of highly specific, and hence less toxic, forms of leukemia therapy.
Abstract: Chromosomal translocations in the human acute leukemias rearrange the regulatory and coding regions of a variety of transcription factor genes. The resultant protein products can interfere with regulatory cascades that control the growth, differentiation, and survival of normal blood cell precursors. Support for this interpretation comes from the results of gene manipulation studies in mice, as well as the sequence homology of oncogenic transcription factors with proteins known to regulate embryonic development in primitive organisms, including the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Many of these genetic alterations have important prognostic implications that can guide the selection of therapy. The insights gained from studies of translocation-generated oncogenes and their protein products should hasten the development of highly specific, and hence less toxic, forms of leukemia therapy.

1,219 citations

Journal ArticleDOI
TL;DR: It is suggested that DNA damage enhances p53 activity as a transcription factor in part through carboxy-terminal acetylation that, in turn, is directed by amino- terminal phosphorylation.
Abstract: Activation of p53-mediated transcription is a critical cellular response to DNA damage. p53 stability and site-specific DNA-binding activity and, therefore, transcriptional activity, are modulated by post-translational modifications including phosphorylation and acetylation. Here we show that p53 is acetylated in vitro at separate sites by two different histone acetyltransferases (HATs), the coactivators p300 and PCAF. p300 acetylates Lys-382 in the carboxy-terminal region of p53, whereas PCAF acetylates Lys-320 in the nuclear localization signal. Acetylations at either site enhance sequence-specific DNA binding. Using a polyclonal antisera specific for p53 that is phosphorylated or acetylated at specific residues, we show that Lys-382 of human p53 becomes acetylated and Ser-33 and Ser-37 become phosphorylated in vivo after exposing cells to UV light or ionizing radiation. In vitro, amino-terminal p53 peptides phosphorylated at Ser-33 and/or at Ser-37 differentially inhibited p53 acetylation by each HAT. These results suggest that DNA damage enhances p53 activity as a transcription factor in part through carboxy-terminal acetylation that, in turn, is directed by amino-terminal phosphorylation.

1,214 citations

Journal ArticleDOI
25 Jun 1999-Science
TL;DR: Coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation of nuclear receptors through its association with p160 coactivators.
Abstract: The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when GRIP1 or SRC-1a was coexpressed. Thus, CARM1 functions as a secondary coactivator through its association with p160 coactivators. CARM1 can methylate histone H3 in vitro, and a mutation in the putative S-adenosylmethionine binding domain of CARM1 substantially reduced both methyltransferase and coactivator activities. Thus, coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation.

1,206 citations

Journal ArticleDOI
TL;DR: It is shown that EIN3 and EILs comprise a family of novel sequence-specific DNA-binding proteins that regulate gene expression by binding directly to a primary ethylene response element related to the tomato E4-element.
Abstract: Response to the gaseous plant hormone ethylene in Arabidopsis requires the EIN3/EIL family of nuclear proteins. The biochemical function(s) of EIN3/EIL proteins, however, has remained unknown. In this study, we show that EIN3 and EILs comprise a family of novel sequence-specific DNA-binding proteins that regulate gene expression by binding directly to a primary ethylene response element (PERE) related to the tomato E4-element. Moreover, we identified an immediate target of EIN3, ETHYLENE-RESPONSE-FACTOR1 (ERF1), which contains this element in its promoter. EIN3 is necessary and sufficient for ERF1 expression, and, like EIN3-overexpression in transgenic plants, constitutive expression of ERF1 results in the activation of a variety of ethylene response genes and phenotypes. Evidence is also provided that ERF1 acts downstream of EIN3 and all other components of the ethylene signaling pathway. The results demonstrate that the nuclear proteins EIN3 and ERF1 act sequentially in a cascade of transcriptional regulation initiated by ethylene gas.

1,205 citations

Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: Data support the role of NF-kappa B as a vital transcription factor for both specific and nonspecific immune responses, but do not indicate a developmental role for the factor.

1,203 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
98% related
Signal transduction
122.6K papers, 8.2M citations
96% related
Gene expression
113.3K papers, 5.5M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Protein kinase A
68.4K papers, 3.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,678
20226,545
20213,663
20203,530
20193,362
20183,288