scispace - formally typeset
Search or ask a question
Topic

Transfer function

About: Transfer function is a research topic. Over the lifetime, 14362 publications have been published within this topic receiving 214983 citations. The topic is also known as: system function & network function.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple CMOS circuit technique for realizing both linear transconductance and a precision square-law function is described, which is versatile in application and diverse applications are demonstrated in the fields of linear amplifiers, continuous-time filters, and nonlinear function implementation.
Abstract: A simple CMOS circuit technique for realizing both linear transconductance and a precision square-law function is described. The circuit provides two separate outputs in the linear as well as square-law modes. The linear outputs both have a range of 100% or more of the total quiescent current value. The theory of operation is presented and effects of transistor nonidealities on the performance are investigated. Design optimization techniques are developed. Experimental results measured on nonoptimized prototypes are: distortion of 0.2% for input signals up to 2.4 V/SUB p-p/ in the case of linear transfer function and 1.3% in the case of the square-law transfer function, with a DC to -3-dB bandwidth of up to 20 MHz. Improved performance is expected when the optimization techniques developed are applied. The circuit is versatile in application: diverse applications are demonstrated in the fields of linear amplifiers, continuous-time filters, and nonlinear function implementation.

327 citations

Journal ArticleDOI
TL;DR: Four current control structures for selective harmonic compensation in active power filters are compared and it emerges that the fourth one has superior behavior and robustness and can stably work at higher frequencies than the others.
Abstract: This paper compares four current control structures for selective harmonic compensation in active power filters. All controllers under scrutiny perform the harmonic compensation by using arrays of resonant controllers, one for the fundamental and one for each harmonic of interest, in order to achieve zero phase shift and unity gain in the closed-loop transfer function for selected harmonics. The complete current controller is the superposition of all individual harmonic controllers and may be implemented in various reference frames. The analysis is focused on the comparison of harmonic and total closed-loop transfer functions for each controller. Analytical similarities and differences between schemes in terms of frequency response characteristics are emphasized. It is concluded that three of them have identical harmonic behavior despite the fact that their implementation is significantly different. It emerges that the fourth one has superior behavior and robustness and can stably work at higher frequencies than the others. Theoretical findings and analysis are supported by comparative experimental results on a 7-kVA laboratory setup. The highest harmonic frequency that can be stably compensated with each control method has been determined, indicating significant differences in the control performance.

321 citations

Journal ArticleDOI
TL;DR: Some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems are revisited, and a model for the response in the vertical plane of a modern containership is considered.

319 citations

01 Jan 1991
TL;DR: In this paper, the authors presented a comprehensive analysis of a pulse width modulated (PWM) ac-to-dc voltage source converter under phase and amplitude control, which is discontinuous, time-variant, and nonlinear.
Abstract: This paper presents a comprehensive analysis of a pulse- width modulated (PWM) ac-to-dc voltage source converter under phase and amplitude control. A general mathematical model of the converter, which is discontinuous, time-variant, and nonlinear, is first established. To obtain closed-form solutions, the following three techniques are used: Fourier analysis, transformation of reference frame, and small signal linearization. Three models, namely, a steady-state dc model, a low-frequency small-signal ac model, and a high-frequency model, are consequently developed. Finally, three solution sets, namely, the steady-state solution, various dynamic transfer functions, and the high- frequency harmonic components, are obtained from the three models. The theoretical results are verified experimentally.

317 citations

Journal ArticleDOI
TL;DR: A necessary and sufficient condition, expressed simply as the dc loop gain being less than unity, is given in this note to guarantee the internal stability of a feedback interconnection of linear time-invariant multiple-input multiple-output systems with negative imaginary frequency response.
Abstract: A necessary and sufficient condition, expressed simply as the dc loop gain (i.e., the loop gain at zero frequency) being less than unity, is given in this note to guarantee the internal stability of a feedback interconnection of linear time-invariant (LTI) multiple-input multiple-output systems with negative imaginary frequency response. Systems with negative imaginary frequency response arise, for example, when considering transfer functions from force actuators to colocated position sensors, and are commonly important in, for example, lightly damped structures. The key result presented here has similar application to the small-gain theorem, which refers to the stability of feedback interconnections of contractive gain systems, and the passivity theorem, which refers to the stability of feedback interconnections of positive real (or passive) systems. A complete state-space characterization of systems with negative imaginary frequency response is also given in this note and also an example that demonstrates the application of the key result is provided.

316 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
89% related
Nonlinear system
208.1K papers, 4M citations
85% related
Artificial neural network
207K papers, 4.5M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
81% related
Voltage
296.3K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023351
2022810
2021329
2020421
2019461
2018493