scispace - formally typeset
Search or ask a question
Topic

Transfer function

About: Transfer function is a research topic. Over the lifetime, 14362 publications have been published within this topic receiving 214983 citations. The topic is also known as: system function & network function.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a discrete-time output error (OE) model is applied to parameter estimation of two-mass mechanical systems in electric drives for automatic tuning of model-based speed and position controllers.
Abstract: This paper deals with methods for parameter estimation of two-mass mechanical systems in electric drives. Estimates of mechanical parameters are needed in the start-up of a drive for automatic tuning of model-based speed and position controllers. A discrete-time output error (OE) model is applied to parameter estimation. The resulting pulse-transfer function is transformed into a continuous-time transfer function, and parameters of the two-mass system model are analytically solved from the coefficients of this transfer function. An open-loop identification setup and two closed-speed-loop identification setups (direct and indirect) are designed and experimentally compared. The experiments are carried out at nonzero speed to reduce the effect of nonlinear friction phenomena on the parameter estimates. According to results, all three identification setups are applicable for the parameter estimation of two-mass mechanical systems.

50 citations

Journal ArticleDOI
TL;DR: In this article, the Mueller matrix is expressed in terms of fundamental system parameters that describe the voltage transfer functions (known as the Jones matrix) of the various system devices in physical terms and thus provide a means for comparing with engineering calculations and investigating the effects of design changes.
Abstract: Modern digital cross-correlators permit the simultaneous measurement of all four Stokes parameters. However, the results must be calibrated to correct for the polarization transfer function of the receiving system. The transfer function for any device can be expressed by its Mueller matrix. We express the matrix elements in terms of fundamental system parameters that describe the voltage transfer functions (known as the Jones matrix) of the various system devices in physical terms and thus provide a means for comparing with engineering calculations and investigating the effects of design changes. We describe how to determine these parameters with astronomical observations. We illustrate the method by applying it to some of the receivers at the Arecibo Observatory.

50 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived analytical expressions for an upper bound on probability of error for integrate-and-threshold detection at the receiver, and determined the optimal dispersion parameters of each fiber segment required to minimize the effects of linear dispersion, fiber nonlinearities and ASE noise from the amplifiers.
Abstract: A new methodology for designing long-haul fiber-optic communication systems is presented. We derive the overall Volterra series transfer function of the system including linear dispersion, fiber nonlinearities, amplified spontaneous emission (ASE) noise from the fiber amplifiers, and the square-law nature of the direct detection (DD) system. Since analytical expressions for the probability of error are difficult to derive for the complex systems being used, we derive analytical expressions for an upper bound on probability of error for integrate-and-threshold detection at the receiver. Using this bound as a performance criterion, we determine the optimal dispersion parameters of each fiber segment required to minimize the effects of linear dispersion, fiber nonlinearities and ASE noise from the amplifiers. We study the dependence of optimal dispersion parameters on the average power levels in the fiber by varying the peak input power levels and the amplifier gains. Analytical expressions give us the freedom to choose system parameters in a practical manner, while providing optimum system performance. Using a simple system as an example, we demonstrate the power of the Volterra series approach to design optimal optical communication systems. The analysis and the design procedure presented in this work can be extended to the design of more complex wavelength division multiplexed (WDM) systems.

50 citations

Proceedings ArticleDOI
06 Jul 2016
TL;DR: The validity and predictive value of the control design procedure (both in terms of stability and performance) will be demonstrated by means of (measurement) results obtained from an industrial wafer stage system.
Abstract: In dealing with inherent limitations during stage control design, the possibilities of a second-order reset element (SORE) are studied, in particular, a second-order low-pass filter with reset. Inducing significantly less phase lag, which follows from describing function analysis, SOREs allow for a significant increase of bandwidth in comparison to linear second-order elements. Being part of a reset control design procedure, loop-shaping of the linear feedback loop with a reset element will be based on a describing function description of this element. For the reset control system, closed-loop stability will be verified by solving linear matrix inequalities. The validity and predictive value of the control design procedure (both in terms of stability and performance) will be demonstrated by means of (measurement) results obtained from an industrial wafer stage system.

50 citations

Journal ArticleDOI
TL;DR: In this article, three circuits each realizing a first-order all-pass transfer function are described, each of which offers high input impedance and controllable voltage gain, and three circuits are described.
Abstract: Three circuits each realizing a, first-order all-pass transfer function are described in this communication, These circuits offer high input impedance and controllable voltage gain.

50 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
89% related
Nonlinear system
208.1K papers, 4M citations
85% related
Artificial neural network
207K papers, 4.5M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
81% related
Voltage
296.3K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023351
2022810
2021329
2020421
2019461
2018493