scispace - formally typeset
Search or ask a question
Topic

Transfer function

About: Transfer function is a research topic. Over the lifetime, 14362 publications have been published within this topic receiving 214983 citations. The topic is also known as: system function & network function.


Papers
More filters
Journal ArticleDOI
TL;DR: A recursive prediction error identification algorithm, based on the Wiener model, is derived and shows that the input signal should be such that there is signal energy in the whole range of the piecewise linear approximation.

292 citations

Journal ArticleDOI
01 Nov 1969
TL;DR: The inverse Nyquist array as discussed by the authors is a set of diagrams corresponding to the elements of the inverse of the open-loop transfer function of a control system, which can be used to investigate the stability of multivariable control systems.
Abstract: The inverse Nyquist array is a set of diagrams corresponding to the elements of the inverse of the open-loop transfer function of a control system. A number of theorems are proved which show how this array can be used to investigate the stability of multivariable control systems. The application of the array to the design of such systems is illustrated.

291 citations

Book
09 Jun 1991
TL;DR: This chapter presents a general introduction to Parameter Estimation, an example: measurement of a resistor, and a review of Estimation Methods and their Applications, which focuses on the least squares technique.
Abstract: Chapter headings and selected topics: Preface. A General Introduction to Parameter Estimation. Steps in the identification process. Parameter estimation, an example: measurement of a resistor. The ideal estimator. A Review of Estimation Methods and their Applications. Motives in focusing on the least squares technique. Parametric models. Time domain versus frequency domain. Errors due to noise on the independent variables. A Maximum Likelihood Estimator for Linear Time Invariant Systems. Measurement of a resistance. Estimation of transfer functions: a practical approach. Estimation of transfer functions: a theoretical approach. Numerical considerations. Extensions of the model. Application of ELiS to experimental data. Conclusions. Design of Excitation Signals. Optimization of the time domain behaviour of excitation signals. Optimizing the frequency domain behaviour of excitation signals: design of optimized power spectra. Model Selection. Verification of model validity. Introduction of the model complexity in the cost function. Study of the influence of model errors on the behaviour of the cost function. Optimal experiment strategy. Examples. Estimation of Linear Time Invariant Systems with Delay. The estimation algorithm and its properties. Simulations. Phase Correction of Linear Time Invariant Systems with Digital Allpass Filters. Phase distortion. Optimization strategy. Noise sensitivity. Application of ELiS to Measurement Problems. Modal analysis. Flight flutter data analysis. A Guideline for Transfer Function Estimation. Accurate modeling of a linear analog system. References. Author index. Subject index.

286 citations

Book
01 Jan 1975
TL;DR: This paper presents a meta-modelling procedure called “Smart Card” which automates the very laborious and therefore time-heavy and expensive and expensive process of manually cataloging and cataloging the components of a computer.
Abstract: Review of least squares, orthogonality and the Fourier series review of continuous transforms transfer functions and convolution sampling and measurement of signals the discrete Fourier transform the fast Fourier transform the z-transform non-recursive digital systems digital and continuous systems simulation of continuous systems analogue and digital filter design review of random functions correlation and power spectra least-squares system design random sequences and spectral estimation.

286 citations

Journal ArticleDOI
TL;DR: In this paper, a method to use linear analysis to capture the frequency coupling of nonlinear and time-varying components is presented, which facilitates an object-oriented approach to modeling, which supports reuse of models.
Abstract: Presents a method to use linear analysis to capture the frequency coupling of nonlinear and time-varying components. System stability is analyzed by connecting the harmonic transfer functions of the different component models. This facilitates an object-oriented approach to modeling, which supports reuse of models. An analysis of the complete railway system is, of course, difficult. Several locomotives can be moving along the power distribution line at the same time, and depending on the distance between them, the interaction changes. The power consumption also changes, depending on operating modes. During normal operation, energy is consumed from the network, but as modern locomotives use electrical braking, the power flow changes direction during deceleration, and energy is delivered back to the grid. The inverter trains are not passive systems. The converters are controlled with only limited system knowledge (local measurements of currents and voltages), making analysis and control design an even bigger challenge.

282 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
89% related
Nonlinear system
208.1K papers, 4M citations
85% related
Artificial neural network
207K papers, 4.5M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
81% related
Voltage
296.3K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023351
2022810
2021329
2020421
2019461
2018493