scispace - formally typeset
Search or ask a question
Topic

Transformation (function)

About: Transformation (function) is a research topic. Over the lifetime, 18195 publications have been published within this topic receiving 283231 citations. The topic is also known as: transformations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a framework for efficient IV estimators of random effects models with information in levels which can accommodate predetermined variables is presented. But the authors do not consider models with predetermined variables that have constant correlation with the effects.

16,245 citations

Journal ArticleDOI
TL;DR: In this article, Lindley et al. make the less restrictive assumption that such a normal, homoscedastic, linear model is appropriate after some suitable transformation has been applied to the y's.
Abstract: [Read at a RESEARCH METHODS MEETING of the SOCIETY, April 8th, 1964, Professor D. V. LINDLEY in the Chair] SUMMARY In the analysis of data it is often assumed that observations Yl, Y2, *-, Yn are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal, homoscedastic, linear model is appropriate after some suitable transformation has been applied to the y's. Inferences about the transformation and about the parameters of the linear model are made by computing the likelihood function and the relevant posterior distribution. The contributions of normality, homoscedasticity and additivity to the transformation are separated. The relation of the present methods to earlier procedures for finding transformations is discussed. The methods are illustrated with examples.

12,158 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce and study the most basic properties of three new variational problems which are suggested by applications to computer vision, and study their application in computer vision.
Abstract: : This reprint will introduce and study the most basic properties of three new variational problems which are suggested by applications to computer vision. In computer vision, a fundamental problem is to appropriately decompose the domain R of a function g (x,y) of two variables. This problem starts by describing the physical situation which produces images: assume that a three-dimensional world is observed by an eye or camera from some point P and that g1(rho) represents the intensity of the light in this world approaching the point sub 1 from a direction rho. If one has a lens at P focusing this light on a retina or a film-in both cases a plane domain R in which we may introduce coordinates x, y then let g(x,y) be the strength of the light signal striking R at a point with coordinates (x,y); g(x,y) is essentially the same as sub 1 (rho) -possibly after a simple transformation given by the geometry of the imaging syste. The function g(x,y) defined on the plane domain R will be called an image. What sort of function is g? The light reflected off the surfaces Si of various solid objects O sub i visible from P will strike the domain R in various open subsets R sub i. When one object O1 is partially in front of another object O2 as seen from P, but some of object O2 appears as the background to the sides of O1, then the open sets R1 and R2 will have a common boundary (the 'edge' of object O1 in the image defined on R) and one usually expects the image g(x,y) to be discontinuous along this boundary. (JHD)

5,516 citations

Journal ArticleDOI
TL;DR: A new approach is proposed which works on range data directly and registers successive views with enough overlapping area to get an accurate transformation between views and is performed by minimizing a functional which does not require point-to-point matches.

2,850 citations

Journal ArticleDOI
TL;DR: In this paper, a simple procedure is derived which determines a best rotation of a given vector set into a second vector set by minimizing the weighted sum of squared deviations, which is generalized for any given metric constraint on the transformation.
Abstract: A simple procedure is derived which determines a best rotation of a given vector set into a second vector set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric constraint on the transformation.

2,843 citations


Network Information
Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
76% related
Image processing
229.9K papers, 3.5M citations
76% related
Artificial neural network
207K papers, 4.5M citations
75% related
Feature extraction
111.8K papers, 2.1M citations
75% related
Optimization problem
96.4K papers, 2.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202225
2021828
2020865
2019867
2018891
2017726