scispace - formally typeset
Search or ask a question
Topic

Transformation optics

About: Transformation optics is a research topic. Over the lifetime, 2687 publications have been published within this topic receiving 102378 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that gradient index metamaterials (GIMs) could be utilized to manipulate wave propagation in waveguides, and these devices not only work for both transverse electric and magnetic polarized waves, but also function for a broadband of spectra.
Abstract: In this letter, we find that gradient index metamaterials (GIMs) could be utilized to manipulate wave propagation in waveguides. Through manipulating the conversion between propagating wave and surface wave, we can design some interesting applications in waveguides, such as controlling transmission effect, realizing bending waveguide and achieving waveguide splitting effect. These devices not only work for both transverse electric and magnetic polarized waves, but also function for a broadband of spectra. Numerical simulations are performed to verify our findings.

23 citations

Journal ArticleDOI
TL;DR: In this article, the use of a 3D-ELC resonator to obtain a minimally refractive and strongly transmissive composite metamaterial is explored, which can be used in creating mechanically durable materials for use as radomes or other enclosures for radiating structures.
Abstract: The use of a three-dimensional electric-LC (3D-ELC) resonator to obtain a minimally refractive and strongly transmissive composite metamaterial is explored. The 3D-ELC repeated unit cell consists of two ELC elements that, when put together, may be used to generate responding electric dipole moments in the x?, y?, and z? directions. When embedded inside a host material whose permittivity is significantly greater than unity, the repeated 3D-ELC metamaterial can be used to depress the effective dielectric constant of the resulting composite material to a near-unity value in all Cartesian directions. The concept of designing a unity-index metamaterial-with the properties of free space-may prove useful in creating mechanically durable materials for use as radomes or other enclosures for radiating structures.

23 citations

Journal ArticleDOI
TL;DR: In this article, the propagation of locally superluminal refractive index perturbation in a Kerr medium can be described by means of a stationary metric, which is of Gordon type.
Abstract: In the framework of transformation optics, we show that the propagation of a locally superluminal refractive index perturbation (RIP) in a Kerr medium can be described, in the eikonal approximation, by means of a stationary metric, which we prove to be of Gordon type. Under suitable hypotheses on the RIP, we obtain a stationary but not static metric, which is characterized by an ergosphere and by a peculiar behaviour of the geodesics, which are studied numerically, also accounting for material dispersion. Finally, the equation to be satisfied by an event horizon is also displayed and briefly discussed.

23 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional carpet cloak for static magnetic field is presented, which renders the magnetic response of a given volume invisible from its exterior, without altering the external magnetic fields.
Abstract: We present a two-dimensional carpet cloak for static magnetic field, a design that renders the magnetic response of a given volume invisible from its exterior, without altering the external magnetic fields. The device is designed using transformation optics method and can be implemented with alternating superconducting and magnetic material layers. Through the proper design of the constitutive tensors and relative thicknesses of each slab, we achieve the perfect performance of invisibility. Full wave numerical simulations confirm our design.

23 citations

Journal ArticleDOI
TL;DR: The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.
Abstract: Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to the surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As a result, properly designed electromagnetic environments could govern wave phenomena and tailor various characteristics. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial), are analyzed both numerically and experimentally. The effect of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on the scattering phenomena is studied in detail. It is shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering are experimentally observed. Numerical analysis is in agreement with the experiment, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.

23 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
87% related
Dielectric
169.7K papers, 2.7M citations
84% related
Laser
353.1K papers, 4.3M citations
83% related
Quantum dot
76.7K papers, 1.9M citations
83% related
Amplifier
163.9K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202269
202147
202070
2019100
201890