scispace - formally typeset
Search or ask a question
Topic

Transformation optics

About: Transformation optics is a research topic. Over the lifetime, 2687 publications have been published within this topic receiving 102378 citations.


Papers
More filters
Journal ArticleDOI
01 Jan 2016
TL;DR: In this article, a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces is presented, including invisibility cloaks and radar illusions based on transformation optics.
Abstract: We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.

11 citations

Journal ArticleDOI
TL;DR: This paper proposes a simultaneously double negative elastic metamaterial design which does not suffer from the narrow bandwidth constraints of previous designs and has an effective wavelength which asymptotically goes to infinity with frequency.
Abstract: Previous studies into solid elastic metamaterials which have a simultaneously negative effective bulk modulus and density have proposed designs for materials with relatively narrow bandwidths, because of the reliance on resonators to provide the dispersive material properties. Some of the proposed novel applications for metamaterials, such as invisibility cloaks and sub-wavelength lenses, generally require materials with inherently larger bandwidths for practical exploitation. In this paper, a well-known electromagnetic metamaterial design is used together with the electrical-mechanical circuit analogies to propose a simultaneously double negative elastic metamaterial design which does not suffer from the narrow bandwidth constraints of previous designs. An interesting consequence of the proposed design is that it has an effective wavelength which asymptotically goes to infinity with frequency.

11 citations

Journal ArticleDOI
TL;DR: It is shown that effective medium theory (EMT) inaccurately predicts the focal length of such devices, and an efficient and accurate design approach based on 2D finite element method (FEM) mode calculations that are in good agreement with 3D FDTD simulations is proposed.
Abstract: In this article, we report an integrated optical nanolens exhibiting a pseudo-graded index distribution in a guided configuration. This dielectric metalens relies on a permittivity distribution through dielectric strips of the core material, which is compatible with existing silicon photonic technology. We show in this paper that effective medium theory (EMT) inaccurately predicts the focal length of such devices, and we propose an efficient and accurate design approach based on 2D finite element method (FEM) mode calculations that are in good agreement with 3D FDTD simulations. The lens was fabricated on a 200 mm silicon on insulator pilot line, and fibre-to-fibre optical characterizations revealed an excellent transmission of 85% for TM polarization, in line with the simulated performance (90%). The proposed approach can be easily extended to width-variable strips, enabling the realization of all types of graded index devices, especially those derived from transformation optics.

11 citations

Journal ArticleDOI
TL;DR: The mechanism for surface mode formation and their existence conditions for semi-infinite metamaterials in the frame of couple mode theory are shown and analyzed.
Abstract: We present general properties of surface modes in binary metal-dielectric metamaterials. We show mechanism for surface mode formation and analyze their existence conditions for semi-infinite metamaterials in the frame of couple mode theory.

11 citations

Journal ArticleDOI
TL;DR: In this article, a series of Eaton lenses with a singularity for flexural waves can be obtained by approaching a near-zero thickness of the plate precisely at the location of the singularity.
Abstract: Transformation optics, which is generically applicable to other classical waves such as acoustic and elastic waves, provides an emerging design paradigm to manipulate waves. However, some lenses and optical-transformation devices require a singular refractive index; meeting this requirement is a significant challenge. A method called transmutation can relax some types of index singularity into finite anisotropy around the singularity. Here, we show that such lenses with a singularity for flexural waves can be obtained by approaching a near-zero thickness of the plate precisely at the location of the singularity. As examples, we demonstrate a series of Eaton lenses theoretically and experimentally by projecting the refractive index in space onto the thickness in plates and by working in a broad frequency range in which impedance mismatch is negligible. This framework offers an insight into feasible methods that can be used to develop singular devices such as cloaking devices on thin flexible curved plates and can be further extended to a general methodology for shaping elastic waves. We hope that this elastic platform can also be a test bed to indirectly study unprecedented phenomena enabled by gravitational and quantum fields in terms of analog models.

11 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
87% related
Dielectric
169.7K papers, 2.7M citations
84% related
Laser
353.1K papers, 4.3M citations
83% related
Quantum dot
76.7K papers, 1.9M citations
83% related
Amplifier
163.9K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202269
202147
202070
2019100
201890