scispace - formally typeset
Search or ask a question
Topic

Transformation optics

About: Transformation optics is a research topic. Over the lifetime, 2687 publications have been published within this topic receiving 102378 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Two-dimensional far-zone focusing lenses are designed using the coordinate transformation approach that feature minimized reflections from the lens boundaries that are verified using a full-wave finite-element analysis and compared with previously reported transformation optical lenses.
Abstract: Two-dimensional far-zone focusing lenses are designed using the coordinate transformation approach that feature minimized reflections from the lens boundaries. A flat lens of trapezoidal cross section completely converts incident waves with cylindrical wavefronts into transmitted waves with planar wavefronts. A rectangular lens with reduced non-magnetic material parameters that incorporates a nonlinear coordinate transformation features a significantly reduced amount of reflections compared with the non-magnetic lens based on a linear transformation. The improved reflection performance of each new lens design is verified using a full-wave finite-element analysis and compared with previously reported transformation optical lenses.

74 citations

Journal ArticleDOI
TL;DR: In this paper, a conformal mapping technique is used to take advantage of conformal alignment for various optical elements such as directional antennas, flat lenses, or bends. And the authors show that these elements can be implemented with isotropic materials, thus strongly facilitating their fabrication, and furthermore generalize the concept and show that under certain conditions previously suggested devices consisting of anisotropic materials may be replaced by isotropics using an appropriate transformation.
Abstract: By taking advantage of a conformal mapping technique, we propose designs for various optical elements such as directional antennas, flat lenses, or bends. In contrast to most of the existing design approaches, the elements can be implemented with isotropic materials, thus strongly facilitating their fabrication. We furthermore generalize the concept and show that under certain conditions previously suggested devices consisting of anisotropic materials may be replaced by isotropic ones using an appropriate transformation. The designs are double-checked by full-wave simulations. A comparison with their anisotropic counterparts reveals a similar performance.

74 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the permeability and permittivity tensors of a metamaterial able to transform an isotropically radiating source into a compact ultradirective antenna in the microwave domain.
Abstract: Spatial coordinate transformation is used as a reliable tool to control electromagnetic fields. In this paper, we derive the permeability and permittivity tensors of a metamaterial able to transform an isotropically radiating source into a compact ultradirective antenna in the microwave domain. We show that the directivity of this antenna is competitive with regard to conventional directive antennas horn and reflector antennas, besides its dimensions are smaller. Numerical simulations using finite element method are performed to illustrate these properties. A reduction in the electromagnetic material parameters is also proposed for an easy fabrication of this antenna from existing materials. Following that, the design of the proposed antenna using a layered metamaterial is presented. The different layers are all composed of homogeneous and uniaxial anisotropic metamaterials, which can be obtained from simple metal-dielectric structures. When the radiating source is embedded in the layered metamaterial, a highly directive beam is radiated from the antenna

74 citations

Journal ArticleDOI
TL;DR: A hydrodynamic metamaterial cloak that can conceal an object in two-dimensional creeping flow by guiding viscous forces by calculating a tensoric viscosity based on a form invariance of Navier-Stokes equations is proposed.
Abstract: Metamaterials engineered based on transformation optics have facilitated inaccessible manipulation of various physical phenomena. However, such metamaterials have not been introduced for flowing viscous matter. Here we propose a hydrodynamic metamaterial cloak that can conceal an object in two-dimensional creeping flow by guiding viscous forces. Coordinate transformation of fluidic space is implemented to calculate a tensoric viscosity based on a form invariance of Navier-Stokes equations. The hydrodynamic cloak with the viscosity tensor is numerically simulated to verify a fictitious fluidic empty space created in it. The corresponding metamaterial microstructure is systemically designed and fabricated in a microfluidic device. The experimental results reveal that a solid object amid the flow can be hydrodynamically hidden without entailing a disturbance in flow fields and experiencing a drag.

74 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
87% related
Dielectric
169.7K papers, 2.7M citations
84% related
Laser
353.1K papers, 4.3M citations
83% related
Quantum dot
76.7K papers, 1.9M citations
83% related
Amplifier
163.9K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202269
202147
202070
2019100
201890