scispace - formally typeset
Search or ask a question
Topic

Transistor

About: Transistor is a research topic. Over the lifetime, 138090 publications have been published within this topic receiving 1455233 citations.


Papers
More filters
Journal ArticleDOI
24 Dec 2009-Nature
TL;DR: Resonance-enhanced coupling to the nearest molecular orbital is revealed by electron tunnelling spectroscopy, demonstrating direct molecular orbital gating in an electronic device, and demonstrating that true molecular transistors can be created.
Abstract: The ultimate in electronic device miniaturization would be the creation of circuit elements consisting of an individual molecule. A single-molecule transistor exploiting the electrostatic modulation of a molecule's orbital energy is a theoretical possibility. Now Hyunwook Song and colleagues report the successful realization of such a device, a proof of concept that should enhance the practical prospects for molecularly engineered electronics. A longstanding aim in molecular-scale electronics is to create a true transistor analogue in which charge transport through a molecule is directly controlled by external modulation of the molecular orbitals. The observation of such a solid-state molecular device is now reported. The data demonstrate that true molecular transistors can be created, and clear the way for molecularly engineered electronic devices. The control of charge transport in an active electronic device depends intimately on the modulation of the internal charge density by an external node1. For example, a field-effect transistor relies on the gated electrostatic modulation of the channel charge produced by changing the relative position of the conduction and valence bands with respect to the electrodes. In molecular-scale devices2,3,4,5,6,7,8,9,10, a longstanding challenge has been to create a true three-terminal device that operates in this manner (that is, by modifying orbital energy). Here we report the observation of such a solid-state molecular device, in which transport current is directly modulated by an external gate voltage. Resonance-enhanced coupling to the nearest molecular orbital is revealed by electron tunnelling spectroscopy, demonstrating direct molecular orbital gating in an electronic device. Our findings demonstrate that true molecular transistors can be created, and so enhance the prospects for molecularly engineered electronic devices.

693 citations

Journal ArticleDOI
TL;DR: A functional MOS transistor is proposed which works more intelligently than a mere switching device, and is ideal for ULSI implementation.
Abstract: A functional MOS transistor is proposed which works more intelligently than a mere switching device. The functional transistor calculates the weighted sum of all input signals at the gate level, and controls the 'on' and 'off' of the transistor based on the result of such a weighted sum operation. Since the function is quite analogous to that of biological neurons, the device is named a neuron MOSFET, or neuMOS (vMOS). The device is composed of a floating gate and multiples of input gates that capacitively interact with the floating gate. As the gate-level sum operation is performed in a voltage mode utilizing the capacitive coupling effect, essentially no power dissipation occurs in the calculation, making the device ideal for ULSI implementation. The basic characteristics of neuron MOSFETs as well as of simple circuit blocks are analyzed based on a simple transistor model and experiments. Making use of its very powerful function, a number of interesting circuit applications are explored. A soft hardware logic circuit implemented by neuMOS transistors is also proposed. >

689 citations

Journal ArticleDOI
TL;DR: This first demonstration of CNT transistors with channel lengths down to 9 nm shows substantially better scaling behavior than theoretically expected and should ignite exciting new research into improving the purity and placement of nanotubes, as well as optimizing CNT transistor structure and integration.
Abstract: Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.

681 citations

Journal ArticleDOI
TL;DR: In this article, a new technique is presented for separating the threshold voltage shift of a metaloxide-semiconductor transistor into shifts due to interface traps and trappedoxide charge, which is applied to threshold voltage shifts on an n-channel transistor that result from ionizing radiation.
Abstract: A new technique is presented for separating the threshold‐voltage shift of a metal‐oxide‐semiconductor transistor into shifts due to interface traps and trapped‐oxide charge. This technique is applied to threshold‐voltage shifts on an n‐channel transistor that result from ionizing radiation.

676 citations

Journal ArticleDOI
TL;DR: In this article, an improved analysis of low frequency trapping noise in a MOS device is proposed, taking into account the supplementary fluctuations of the mobility induced by those of the interface charge, which enables an adequate description of the gate voltage dependence of the input equivalent gate voltage noise to be obtained in various actual situations.
Abstract: An improved analysis of low frequency trapping noise in a MOS device is proposed. This analysis takes into account the supplementary fluctuations of the mobility induced by those of the interface charge. It enables an adequate description of the gate voltage dependence of the input equivalent gate voltage noise to be obtained in various actual situations. The outputs given by the Hooge mobility fluctuation model are also presented and discussed with respect to those obtained by the carrier number fluctuation model. In particular, the impact of the channel length or channel width, and the model type on the input gate voltage and drain current noise characteristics is studied and compared to typical experimental data. Finally, a procedure for the diagnosis of the low frequency noise sources in a MOS transistor is proposed.

673 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
90% related
Silicon
196K papers, 3M citations
89% related
Voltage
296.3K papers, 1.7M citations
88% related
Amplifier
163.9K papers, 1.3M citations
88% related
Chemical vapor deposition
69.7K papers, 1.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,850
20224,013
20211,802
20203,677
20194,203
20184,241