scispace - formally typeset
Search or ask a question
Topic

Transistor

About: Transistor is a research topic. Over the lifetime, 138090 publications have been published within this topic receiving 1455233 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an n-type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE).
Abstract: Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single-crystal β-Ga2O3 substrates can be realized by melt-growth methods commonly adopted in the industry. High-quality n-type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal-semiconductor field-effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single-crystal Ga2O3 substrates and MBE-grown epitaxial wafers. The MESFETs delivered excellent device performance including an off-state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near-unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh-voltage power switching applications.

400 citations

Journal ArticleDOI
Federico Faccio1, G. Cervelli1
TL;DR: In this article, the authors studied the TID response of transistors and isolation test structures in a 130 nm commercial CMOS technology and demonstrated that the thin gate oxide of the transistors is extremely tolerant to dose, charge trapping at the edge of the transistor still leads to leakage currents and, for the narrow channel transistors, to significant threshold voltage shift.
Abstract: The study of the TID response of transistors and isolation test structures in a 130 nm commercial CMOS technology has demonstrated its increased radiation tolerance with respect to older technology nodes. While the thin gate oxide of the transistors is extremely tolerant to dose, charge trapping at the edge of the transistor still leads to leakage currents and, for the narrow channel transistors, to significant threshold voltage shift-an effect that we call Radiation Induced Narrow Channel Effect (RINCE).

398 citations

Journal ArticleDOI
TL;DR: In this paper, a new technique is presented for separating the thresholdvoltage shift of an MOS transistor into shifts due to interface states and trapped-oxide charge, and the radiation responses of MOS capacitors and transistors fabricated on the same wafer are compared.
Abstract: A new technique is presented for separating the threshold-voltage shift of an MOS transistor into shifts due to interface states and trapped-oxide charge. Using this technique, the radiation responses of MOS capacitors and transistors fabricated on the same wafer are compared. A good correlation is observed between p-substrate capacitors and n-channel transistors irradiated at 10 V, as well as between n-substrate capacitors and p-channel transistors irradiated at 0 V. These correlations were verified for samples having large variations in the amount of radiation-induced trapped holes and interface states. An excellent correlation is also observed between n-channel capacitors and n-substrate transistors irradiated under positive bias. The use of capacitors separately fabricated on control wafers for potential use in process development or monitoring is clearly demonstrated.

396 citations

Journal ArticleDOI
TL;DR: A new model for computer simulation of capacitance effects in MOS transistors is presented, which guarantees conservation of charge and includes bulk capacitances.
Abstract: A new model for computer simulation of capacitance effects in MOS transistors is presented. Transient currents are found directly from the charge distribution in the device rather than from capacitances. The effective capacitances which result are nonreciprocal. The model guarantees conservation of charge and includes bulk capacitances. Several circuit examples are considered.

395 citations

Journal ArticleDOI
Shu-Yau Wu1
TL;DR: In this article, the metal-ferroelectric-semiconductor transistor (MFST) was proposed to control the surface conductivity of a bulk semiconductor substrate and perform a memory function.
Abstract: The ferroelectric field effect has successfully been demonstrated on a bulk semiconductor (silicon) using a thin ferroelectric film of bismuth titanate (Bi 4 Ti 3 O 12 ) deposited onto it by RF sputtering. A new memory device, the metal-ferroelectric-semiconductor transistor (MFST); has been fabricated. This device utilizes the remanent polarization of a ferroeletric thin film to control the surface conductivity of a bulk semiconductor substrate and perform a memory function. The capacitance-voltage characteristics of the metal-ferroelectric-semiconductor structure were employed to study the memory behavior. The details of the study together with a preliminary results on the MFST are presented.

395 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
90% related
Silicon
196K papers, 3M citations
89% related
Voltage
296.3K papers, 1.7M citations
88% related
Amplifier
163.9K papers, 1.3M citations
88% related
Chemical vapor deposition
69.7K papers, 1.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,850
20224,013
20211,802
20203,677
20194,203
20184,241