scispace - formally typeset
Search or ask a question
Topic

Translational regulation

About: Translational regulation is a research topic. Over the lifetime, 3447 publications have been published within this topic receiving 214392 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has predicted target sites on the 3′ untranslated regions of human gene transcripts for all currently known 218 mammalian miRNAs to facilitate focused experiments and suggests that miRNA genes, which are about 1% of all human genes, regulate protein production for 10% or more of allhuman genes.
Abstract: MicroRNAs (miRNAs) interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. The specific function of most mammalian miRNAs is unknown. We have predicted target sites on the 3′ untranslated regions of human gene transcripts for all currently known 218 mammalian miRNAs to facilitate focused experiments. We report about 2,000 human genes with miRNA target sites conserved in mammals and about 250 human genes conserved as targets between mammals and fish. The prediction algorithm optimizes sequence complementarity using position-specific rules and relies on strict requirements of interspecies conservation. Experimental support for the validity of the method comes from known targets and from strong enrichment of predicted targets in mRNAs associated with the fragile X mental retardation protein in mammals. This is consistent with the hypothesis that miRNAs act as sequence-specific adaptors in the interaction of ribonuclear particles with translationally regulated messages. Overrepresented groups of targets include mRNAs coding for transcription factors, components of the miRNA machinery, and other proteins involved in translational regulation, as well as components of the ubiquitin machinery, representing novel feedback loops in gene regulation. Detailed information about target genes, target processes, and open-source software for target prediction (miRanda) is available at http://www.microrna.org. Our analysis suggests that miRNA genes, which are about 1% of all human genes, regulate protein production for 10% or more of all human genes.

3,654 citations

Journal ArticleDOI
26 Nov 2003-Cell
TL;DR: It is described that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis.

3,647 citations

Journal ArticleDOI
10 Apr 2009-Science
TL;DR: A ribosomesome-profiling strategy based on the deep sequencing of ribosome-protected mRNA fragments is presented and enables genome-wide investigation of translation with subcodon resolution and is used to monitor translation in budding yeast under both rich and starvation conditions.
Abstract: Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.

3,416 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: Recent advances in understanding of the molecular structures and biochemical functions of the translation initiation machinery are described and key strategies that mediate general or gene-specific translational control are summarized, particularly in mammalian systems.

2,899 citations

Journal ArticleDOI
21 Dec 2007-Science
TL;DR: It is proposed that translation regulation by microRNPs oscillates between repression and activation during the cell cycle, and two well-studied microRNAs—Let-7 and the synthetic microRNA miRcxcr4—likewise induce translation up-regulation of target mRNAs on cell cycle arrest.
Abstract: AU-rich elements (AREs) and microRNA target sites are conserved sequences in messenger RNA (mRNA) 3' untranslated regions (3'UTRs) that control gene expression posttranscriptionally. Upon cell cycle arrest, the ARE in tumor necrosis factor-alpha (TNFalpha) mRNA is transformed into a translation activation signal, recruiting Argonaute (AGO) and fragile X mental retardation-related protein 1 (FXR1), factors associated with micro-ribonucleoproteins (microRNPs). We show that human microRNA miR369-3 directs association of these proteins with the AREs to activate translation. Furthermore, we document that two well-studied microRNAs-Let-7 and the synthetic microRNA miRcxcr4-likewise induce translation up-regulation of target mRNAs on cell cycle arrest, yet they repress translation in proliferating cells. Thus, activation is a common function of microRNPs on cell cycle arrest. We propose that translation regulation by microRNPs oscillates between repression and activation during the cell cycle.

2,715 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
93% related
RNA
111.6K papers, 5.4M citations
91% related
Protein kinase A
68.4K papers, 3.9M citations
91% related
Phosphorylation
69.3K papers, 3.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
2022109
2021161
2020159
2019153
2018131