scispace - formally typeset
Search or ask a question
Topic

Translational symmetry

About: Translational symmetry is a research topic. Over the lifetime, 1282 publications have been published within this topic receiving 31461 citations. The topic is also known as: translational invariance.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a metallic solid with long-range orientational order, but with icosahedral point group symmetry, which is inconsistent with lattice translations, was observed and its diffraction spots are as sharp as those of crystals but cannot be indexed to any Bravais lattice.
Abstract: We have observed a metallic solid (Al-14-at.%-Mn) with long-range orientational order, but with icosahedral point group symmetry, which is inconsistent with lattice translations. Its diffraction spots are as sharp as those of crystals but cannot be indexed to any Bravais lattice. The solid is metastable and forms from the melt by a first-order transition.

5,702 citations

Journal ArticleDOI
09 Mar 2017-Nature
TL;DR: In this paper, the authors present the experimental observation of a discrete time crystal in an interacting spin chain of trapped atomic ions and apply a periodic Hamiltonian to the system under many-body localization conditions, and observe a subharmonic temporal response that is robust to external perturbations.
Abstract: Spontaneous symmetry breaking is a fundamental concept in many areas of physics, including cosmology, particle physics and condensed matter. An example is the breaking of spatial translational symmetry, which underlies the formation of crystals and the phase transition from liquid to solid. Using the analogy of crystals in space, the breaking of translational symmetry in time and the emergence of a 'time crystal' was recently proposed, but was later shown to be forbidden in thermal equilibrium. However, non-equilibrium Floquet systems, which are subject to a periodic drive, can exhibit persistent time correlations at an emergent subharmonic frequency. This new phase of matter has been dubbed a 'discrete time crystal'. Here we present the experimental observation of a discrete time crystal, in an interacting spin chain of trapped atomic ions. We apply a periodic Hamiltonian to the system under many-body localization conditions, and observe a subharmonic temporal response that is robust to external perturbations. The observation of such a time crystal opens the door to the study of systems with long-range spatio-temporal correlations and novel phases of matter that emerge under intrinsically non-equilibrium conditions.

970 citations

Journal ArticleDOI
17 Apr 1997
TL;DR: In this article, the existence of discrete breathers in nonlinear classical Hamiltonian lattices has been studied and existence proofs, necessary existence conditions, and structural stability of such breathers have been discussed, as well as potential applications in lattice dynamics of solids.
Abstract: Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices - quantum breathers. Finally we will formulate a new conceptual aproach capable of predicting whether discrete breather exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.

919 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of localized excitations and review their basic properties including dynamical and structural stability, and focus on advances in the theory of discrete breathers in three directions.

829 citations

Journal ArticleDOI
02 May 2014-Science
TL;DR: In this paper, the translational symmetry breaking of a crystal at its surface may form two-dimensional (2D) electronic states, and a nonlinear optical imaging technique that allows rapid and all-optical determination of the crystal orientations of the 2D material at a large scale.
Abstract: The translational symmetry breaking of a crystal at its surface may form two-dimensional (2D) electronic states. We observed one-dimensional nonlinear optical edge states of a single atomic membrane of molybdenum disulfide (MoS2), a transition metal dichalcogenide. The electronic structure changes at the edges of the 2D crystal result in strong resonant nonlinear optical susceptibilities, allowing direct optical imaging of the atomic edges and boundaries of a 2D material. Using the symmetry of the nonlinear optical responses, we developed a nonlinear optical imaging technique that allows rapid and all-optical determination of the crystal orientations of the 2D material at a large scale. Our technique provides a route toward understanding and making use of the emerging 2D materials and devices.

592 citations


Network Information
Related Topics (5)
Ground state
70K papers, 1.5M citations
92% related
Phase transition
82.8K papers, 1.6M citations
91% related
Superconductivity
71.9K papers, 1.3M citations
87% related
Excited state
102.2K papers, 2.2M citations
86% related
Electron
111.1K papers, 2.1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202340
202284
202188
202090
201995
201866