scispace - formally typeset

Topic

Transmission electron microscopy

About: Transmission electron microscopy is a(n) research topic. Over the lifetime, 32301 publication(s) have been published within this topic receiving 683577 citation(s). The topic is also known as: TEM.


Papers
More filters
Journal ArticleDOI
Abstract: Monodisperse silicon nanowires were synthesized by exploiting well-defined gold nanoclusters as catalysts for one-dimensional growth via a vapor–liquid–solid mechanism. Transmission electron microscopy studies of the materials grown from 5, 10, 20, and 30 nm nanocluster catalysts showed that the nanowires had mean diameters of 6, 12, 20, and 31 nm, respectively, and were thus well defined by the nanocluster sizes. High-resolution transmission electron microscopy demonstrated that the nanowires have single-crystal silicon cores sheathed with 1–3 nm of amorphous oxide and that the cores remain highly crystalline for diameters as small as 2 nm.

1,207 citations

Journal ArticleDOI
Abstract: The ion exchange reaction of interlayer Na+ ions of a layered polysilicate kanemite with alkyltrimetnylammonium ions, followed by calcination, gives highly ordered mesoporous materials with a hexagonal array of uniform channels.

1,071 citations

Journal ArticleDOI
TL;DR: Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections, in Pseudomonas stutzeri AG259.
Abstract: One mechanism of silver resistance in microorganisms is accumulation of the metal ions in the cell. Here, we report on the phenomenon of biosynthesis of silver-based single crystals with well-defined compositions and shapes, such as equilateral triangles and hexagons, in Pseudomonas stutzeri AG259. The crystals were up to 200 nm in size and were often located at the cell poles. Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections. These Ag-containing crystals are embedded in the organic matrix of the bacteria. Their possible potential as organic-metal composites in thin film and surface coating technology is discussed.

1,051 citations

Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: Annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects.
Abstract: An imaging technique able to resolve and identify all individual atoms in non-periodic solids would be a very useful tool for materials analysis. Annular dark-field (ADF) imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation allows such an analysis, as shown by Ondrej Krivanek and co-workers. The technique was used to examine a monolayer of boron nitride, in which it revealed individual atomic substitutions involving carbon and oxygen impurity atoms. Careful analysis of the data enables the construction of a detailed map of the atomic structure, with all the atoms of the four species resolved and identified. An imaging technique that could identify all the individual atoms, including defects, in a material would be a useful tool. Here an electron-microscopy approach to the problem, based on annular dark-field imaging, is described. A monolayer of boron nitride was studied, and three types of atomic substitution were identified. Careful analysis of the data enabled the construction of a detailed map of the atomic structure. Direct imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on1. It images matter with electrons that scatter strongly from individual atoms and whose wavelengths are about 50 times smaller than an atom. Recently the technique has advanced greatly owing to the introduction of aberration-corrected optics2,3,4,5,6,7,8. However, neither electron microscopy nor any other experimental technique has yet been able to resolve and identify all the atoms in a non-periodic material consisting of several atomic species. Here we show that annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects. Three types of atomic substitutions were found and identified: carbon substituting for boron, carbon substituting for nitrogen, and oxygen substituting for nitrogen. The substitutions caused in-plane distortions in the boron nitride monolayer of about 0.1 A magnitude, which were directly resolved, and verified by density functional theory calculations. The results demonstrate that atom-by-atom structural and chemical analysis of all radiation-damage-resistant atoms present in, and on top of, ultra-thin sheets has now become possible.

1,003 citations

Journal ArticleDOI
01 Jun 1999-Micron
Abstract: The use of focused ion beam (FIB) milling for the preparation of transmission electron microscopy (TEM) specimens is described The operation of the FIB instrument is discussed and the conventional and lift-out techniques for TEM specimen preparation and the advantages and disadvantages of each technique are detailed The FIB instrument may be used for rapid site-specific preparation of both cross-section and plan view TEM specimens

989 citations


Network Information
Related Topics (5)
Thin film

275.5K papers, 4.5M citations

94% related
Oxide

213.4K papers, 3.6M citations

93% related
Nanoparticle

85.9K papers, 2.6M citations

92% related
Carbon nanotube

109K papers, 3.6M citations

92% related
Graphene

144.5K papers, 4.9M citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202226
2021681
2020809
2019927
20181,121
20171,135