scispace - formally typeset
Search or ask a question
Topic

Transmission system

About: Transmission system is a research topic. Over the lifetime, 20524 publications have been published within this topic receiving 169794 citations.


Papers
More filters
Book
24 Dec 1999
TL;DR: The Flexible AC Transmission System (FACTS)—a new technology based on power electronics—offers an opportunity to enhance controllability, stability, and power transfer capability of ac transmission systems.

4,217 citations

Journal ArticleDOI
01 Jul 1992
TL;DR: In this article, the authors outline the technical and economic factors which characterise the uniform, all solid-state power-flow controller approach for real-time controlled, flexible AC transmission systems.
Abstract: The author outlines the technical and economic factors which characterise the uniform, all solid-state power-flow controller approach for real-time controlled, flexible AC transmission systems. The unified power-flow controller in its general form can provide simultaneous, real-time control of all basic power system parameters (transmission voltage, impedance, and phase angle), or any combinations thereof, determining the transmitted power. The parameters selected for control can be changed without hardware alterations, e.g. the function of the controller can be changed from that of a phase-shifter to that of a series line compensator, or vice versa, with or without additional terminal voltage regulation and shunt VAr compensation, to adapt to particular short term contingencies or future system modifications. >

1,018 citations

Book
27 Feb 2002
TL;DR: In this paper, the authors present a comparison of different SVC controllers for power transmission networks with respect to their performance in terms of the number of SVC inputs and outputs, as well as the frequency of the SVC outputs.
Abstract: 1. Introduction. 1.1 Background. 1.2 Electrical Transmission Networks. 1.3 Conventional Control Mechanisms. 1.4 Flexible ac Transmission Systems (FACTS). 1.5 Emerging Transmission Networks. 2. Reactor--Power Control in Electrical Power Transmission Systems. 2.1 Reacrive Power. 2.2 Uncompensated Transmission Lines. 2.3 Passive Compensation. 2.4 Summary. 3. Principles of Conventional Reactive--Power Compensators. 3.1 Introduction. 3.2 Synchronous Condensers. 3.3 The Saturated Reactor (SR). 3.4 The Thyristor--Controlled Reactor (TCR). 3.5 The Thyristor--Controlled Transformer (TCT). 3.6 The Fixed Capacitor--Thyristor--Controlled Reactor (FC--TCR). 3.7 The Mechanically Switched Capacitor--Thristor--Controlled Reactor (MSC--TCR). 3.8 The Thyristor--Switched capacitor and Reactor. 3.9 The Thyristor--Switched capacitor--Thyristor--Controlled Reactor (TSC--TCR). 3.10 A Comparison of Different SVCs. 3.11 Summary. 4. SVC Control Components and Models. 4.1 Introduction 4.2 Measurement Systems. 4.3 The Voltage Regulator. 4.4 Gate--Pulse Generation. 4.5 The Synchronizing System. 4.6 Additional Control and Protection Functions. 4.7 Modeling of SVC for Power--System Studies. 4.8 Summary. 5. Conceepts of SVC Voltage Control. 5.1 Introduction 5.2 Voltage Control. 5.3 Effect of Network Resonances on the Controller Response. 5.4 The 2nd Harmonic Interaction Between the SVC and ac Network. 5.5 Application of the SVC to Series--Compensated ac Systems. 5.6 3rd Harmonic Distortion. 5.7 Voltage--Controlled Design Studies. 5.8 Summary. 6. Applications. 6.1 Introduction. 6.2 Increase in Steady--State Power--Transfer Capacity. 6.3 Enhancement of Transient Stability. 6.4 Augmentation of Power--System Damping. 6.5 SVC Mitigation of Subsychronous Resonance (SSR). 6.6 Prevention of Voltage Instability. 6.7 Improvement of HVDC Link Performance. 6.8 Summary. 7. The Thyristor--Controlled SeriesCapacitor (TCSC). 7.1 Series Compensation. 7.2 The TCSC Controller. 7.3 Operation of the TCSC. 7.4 The TSSC. 7.5 Analysis of the TCSC. 7.6 Capability Characteristics. 7.7 Harmonic Performance. 7.8 Losses. 7.9 Response of the TCSC. 7.10 Modeling of the TCSC. 7.11 Summary. 8. TCSC Applications. 8.1 Introduction. 8.2 Open--Loop Control. 8.3 Closed--Loop Control. 8.4 Improvement of the System--Stability Limit. 8.5 Enhancement of System Damping. 8.6 Subsynchronous Resonanace (SSR) Mitigation. 8.7 Voltage--Collapse Prevention. 8.8 TCSC Installations. 8.9 Summary. 9. Coordination of FACTS Controllers. 9.1 Introduction 9.2 Controller Interactions. 9.3 SVC--SVC Interaction. 9.4 SVC--HVDC Interaction. 9.5 SVC--TCSC Interaction. 9.6 TCSC--TCSC Interaction. 9.7 Performance Criteria for Damping--Controller Design. 9.8 Coordination of Multiple Controllers Using Linear--Control Techniques. 9.9 Coordination of Multiple Controllers using Nonlinear--Control Techniques. 9.10 Summary. 10. Emerging FACTS Controllers. 10.1 Introduction. 10.2 The STATCOM. 10.3 THE SSSC. 10.4 The UPFC. 10.5 Comparative Evaluation of Different FACTS Controllers. 10.6 Future Direction of FACTS Technology. 10.7 Summary. Appendix A. Design of an SVC Voltage Regulator. A.1 Study System. A.2 Method of System Gain. A.3 Elgen Value Analysis. A.4 Simulator Studies. A.5 A Comparison of Physical Simulator results With Analytical and Digital Simulator Results Using Linearized Models. Appendix B. Transient--Stability Enhancement in a Midpoint SVC--Compensated SMIB System. Appendix C. Approximate Multimodal decomposition Method for the Design of FACTS Controllers. C.1 Introduction. C.2 Modal Analysis of the ith Swing Mode, C.3 Implications of Different Transfer Functions. C.4 Design of the Damping Controller. Appendix D. FACTS Terms and Definitions. Index.

954 citations

Journal ArticleDOI
TL;DR: In this article, a theoretical analysis of the dual-polarization constant modulus algorithm is presented, where the control surfaces several different equalizer algorithms are derived, including the decision-directed, trained, and the radially directed equalizer for both polarization division multiplexed quadriphase shift keyed (PDM-QPSK) and 16 level quadrature amplitude modulation (PDm-16-QAM).
Abstract: Digital coherent receivers have caused a revolution in the design of optical transmission systems, due to the subsystems and algorithms embedded within such a receiver. After giving a high-level overview of the subsystems, the optical front end, the analog-to-digital converter (ADC) and the digital signal processing (DSP) algorithms, which relax the tolerances on these subsystems are discussed. Attention is then turned to the compensation of transmission impairments, both static and dynamic. The discussion of dynamic-channel equalization, which forms a significant part of the paper, includes a theoretical analysis of the dual-polarization constant modulus algorithm, where the control surfaces several different equalizer algorithms are derived, including the constant modulus, decision-directed, trained, and the radially directed equalizer for both polarization division multiplexed quadriphase shift keyed (PDM-QPSK) and 16 level quadrature amplitude modulation (PDM-16-QAM). Synchronization algorithms employed to recover the timing and carrier phase information are then examined, after which the data may be recovered. The paper concludes with a discussion of the challenges for future coherent optical transmission systems.

772 citations

Journal ArticleDOI
TL;DR: In this article, a method based on partitioning the system's admittance matrix and deriving an efficient time-varying Thevenin's equivalent for the converter part is presented.
Abstract: The number of semiconductor switches in a modular multilevel converter (MMC) for HVDC transmission is typically two orders of magnitudes larger than that in a two or three level voltage-sourced converter (VSC). The large number of devices creates a computational challenge for electromagnetic transient simulation programs, as it can significantly increase the simulation time. The paper presents a method based on partitioning the system's admittance matrix and deriving an efficient time-varying Thevenin's equivalent for the converter part. The proposed method does not make use of approximate interfaced models, and mathematically, is exactly equivalent to modelling the entire network (converter and external system) as one large network. It is shown to drastically reduce the computational time without sacrificing any accuracy. The paper also presents control algorithms and other modelling aspects. The efficacy of the proposed method is demonstrated by simulating a point-to-point VSC-MMC-based HVDC transmission system.

720 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
87% related
Voltage
296.3K papers, 1.7M citations
84% related
Control system
129K papers, 1.5M citations
81% related
Optical fiber
167K papers, 1.8M citations
81% related
Wind power
99K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023136
2022292
2021418
2020693
2019892
2018927