scispace - formally typeset
Search or ask a question
Topic

Transmittance

About: Transmittance is a research topic. Over the lifetime, 21870 publications have been published within this topic receiving 279343 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The absorption and transport scattering coefficients of c Caucasian and negroid dermis, subdermal fat and muscle have been measured for all wavelengths between 620 and 1000 nm and the optical properties of caucasian dermis were found to be approximately twice those of the underlying fat layer.
Abstract: The absorption and transport scattering coefficients of caucasian and negroid dermis, subdermal fat and muscle have been measured for all wavelengths between 620 and 1000 nm. Samples of tissue 2 mm thick were measured ex vivo to determine their reflectance and transmittance. A Monte Carlo model of the measurement system and light transport in tissue was then used to recover the optical coefficients. The sample reflectance and transmittance were measured using a single integrating sphere 'comparison' method. This has the advantage over conventional double-sphere techniques in that no corrections are required for sphere properties, and so measurements sufficiently accurate to recover the absorption coefficient reliably could be made. The optical properties of caucasian dermis were found to be approximately twice those of the underlying fat layer. At 633 nm, the mean optical properties over 12 samples were 0.033 mm(-1) and 0.013 mm(-1) for absorption coefficient and 2.73 mm(-1) and 1.26 mm(-1) for transport scattering coefficient for caucasian dermis and the underlying fat layer respectively. The transport scattering coefficient for all biological samples showed a monotonic decrease with increasing wavelength. The method was calibrated using solid tissue phantoms and by comparison with a temporally resolved technique.

701 citations

Journal ArticleDOI
TL;DR: In this article, the mean square electric fields induced by plane electromagnetic radiation in a two-phase, three-phase and N-phase stratified medium are derived, and the energy absorption process is discussed.
Abstract: Explicit formulas are derived for the mean-square electric fields induced by plane electromagnetic radiation in a two-phase, three-phase, and N-phase stratified medium. The first (incident) and last phases are semi-infinite in extent. Boundaries separating phases are plane and parallel. Phases are isotropic with arbitrary optical constants. Simple relationships follow for special cases such as at the critical angle for a two-phase system. Equations for reflectance, transmittance, and phase changes on reflectance and transmittance are given. Details are given concerning the energy absorption process, especially in the two- and three-layer cases. Equations for the N-layer case are in terms of characteristic matrices which can be readily programmed for a computer.

664 citations

Journal ArticleDOI
TL;DR: In this article, a nematic liquid crystal cell associated with a homogeneously aligned to twisted transition of a liquid crystal director was fabricated, which exhibits a high transmittance ratio as well as a wide viewing angle.
Abstract: We have fabricated a nematic liquid crystal cell associated with a homogeneously aligned to twisted transition of a liquid crystal director. In the absence of an electric field, the liquid crystal molecule is homogeneously aligned under the crossed polarizers, and thus the cell appears to be black. When a fringe field induced by interdigital electrodes is applied, liquid crystal molecules rotate in plane even above electrodes and thus the cell transmits light. The device exhibits a high transmittance ratio as well as a wide viewing angle, which solves a long standing problem of low transmittance existing in the conventional in-plane switching mode. We show that the distance between electrodes smaller than the width of an electrode and cell gap is required for generating fringe field with applied voltage and rotating molecules above electrodes. We also investigate the mechanism of fringe-field switching and dependence of electro-optic effect on different cell conditions and dielectric anisotropy of liquid ...

656 citations

Journal ArticleDOI
TL;DR: This work demonstrates that thermal/ optical reflectance (TOR) corrections yield equivalent OC/ EC splits for widely divergent temperature protocols, and results determined by simultaneous thermal/optical transmittance (TOT) corrections are 30% lower than TOR for the same temperature protocol and 70-80% lower for a protocol with higher heating temperatures and shorter residence times.
Abstract: Charring of organic carbon (OC) during thermal/optical analysis is monitored by the change in a laser signal either reflected from or transmitted through a filter punch. Elemental carbon (EC) in suspended particulate matter collected on quartz-fiber filters is defined as the carbon that evolves after the detected optical signal attains the value it had prior to commencement of heating, with the rest of the carbon classified as organic carbon (OC). Heretofore, operational definitions of EC were believed to be caused by different temperature protocols rather than by the method of monitoring charring. This work demonstrates that thermal/ optical reflectance (TOR) corrections yield equivalent OC/ EC splits for widely divergent temperature protocols. EC results determined by simultaneous thermal/optical transmittance (TOT) corrections are 30% lower than TOR for the same temperature protocol and 70-80% lower than TOR for a protocol with higher heating temperatures and shorter residence times. This is true for 58 urban samples from Fresno, CA, as well as for 30 samples from the nonurban IMPROVE network that are individually dominated by wildfire, vehicle exhaust, secondary organic aerosol, and calcium carbonate contributions. Visual examination of filter darkening at different temperature stages shows that substantial charring takes place within the filter, possibly due to adsorbed organic gases or diffusion of vaporized particles. The filter transmittance is more influenced by the within-filter char, whereas the filter reflectance is dominated by charring of the near-surface deposit that appears to evolve first when oxygen is added to helium in the analysis atmosphere for these samples. The amounts of charred OC (POC) and EC are also estimated from incremental absorbance. Small amounts of POC are found to dominate the incremental absorbance. EC estimated from absorbance are found to agree better with EC from the reflectance charring correction than with EC from the transmittance charring correction.

614 citations

Journal ArticleDOI
TL;DR: It is shown that the surface plasmon contribution is not the prime effect and that waveguide mode resonance and diffraction are responsible for the extraordinary transmission of metallic grating with very narrow slits and the transmittance of subwavelength metallic gratings is always nearly zero.
Abstract: It is generally admitted that the extraordinary transmission of metallic grating with very narrow slits is mainly due to the excitation of surface plasmons on the upper and lower interfaces of the grating We show that the surface plasmon contribution is not the prime effect and that waveguide mode resonance and diffraction are responsible for the extraordinary transmission Additionally and surprisingly, we reveal that the transmittance of subwavelength metallic gratings is always nearly zero for frequencies corresponding to surface plasmon excitation This finding implies that surface plasmons play a negative role in the transmission

585 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
90% related
Dielectric
169.7K papers, 2.7M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Silicon
196K papers, 3M citations
85% related
Nanoparticle
85.9K papers, 2.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023969
20221,941
2021714
2020987
20191,189
20181,091