scispace - formally typeset
Search or ask a question
Topic

Transverse plane

About: Transverse plane is a research topic. Over the lifetime, 17069 publications have been published within this topic receiving 194059 citations. The topic is also known as: axial plane.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a narrow-band transmission filter is demonstrated near normal incidence that operates through relaxation of supported-mode selection rules and is explained in the context of group theory, where the transverse magnetic and transverse electric dispersion relations of a dielectric grating in the subwavelength and near-wavelength region using finite element modal analysis are determined.
Abstract: A narrow-band transmission filter is demonstrated near normal incidence that operates through relaxation of supported-mode selection rules and is explained in the context of group theory. We calculated the transverse magnetic and transverse electric dispersion relations of a dielectric grating in the subwavelength and near-wavelength region using finite element modal analysis and determine the modes' corresponding irreducible representations. Coupling to select transverse magnetic modes at normal incidence is optimized to yield broadband high reflectance that acts as the background for the transmission filter. While some modes couple at normal incidence, others are shown to remain inaccessible due to symmetry mismatch. Away from normal incidence, the reduced symmetry relaxes the selection rules, enabling weak coupling between the incident field and these symmetry-protected modes. This weak coupling produces narrow transmission bands within the opaque background. Furthermore, by choosing the plane of incidence to include or exclude the grating periodicity, we show that orthogonal mode sets can independently be selected to couple to the incident light, yielding separate transmission bands. This spectral filtering is experimentally demonstrated with a suspended silicon grating in the infrared spectrum ($7--14\ensuremath{\mu}\mathrm{m}$), which agrees well with simulated transmittance spectra and modal analysis.

184 citations

Journal ArticleDOI
TL;DR: In this paper, a new and conceptually simple derivation of the multipole expansion of an electromagnetic field that is generated by a localized, monochromatic charge-current distribution is presented.
Abstract: A new and conceptually simple derivation is presented of the multipole expansion of an electromagnetic field that is generated by a localized, monochromatic charge‐current distribution. The derivation is obtained with the help of a generalized plane wave representation (known also as the angular spectrum representation) of the field. This representation contains both ordinary plane waves, and plane waves that decay exponentially in amplitude as the wave is propagated. The analysis reveals an intimate relationship between the generalized plane wave representation and the multipole expansion of the field and leads to a number of new results. In particular, new expressions are obtained for the electric and magnetic multipole moments in terms of certain components of the spatial Fourier transform of the transverse part of the current distribution. It is shown further that the electromagnetic field at all points outside a sphere that contains the charge‐current distribution is completely specified by the radiation pattern (i.e., by the field in the far zone). Explicit formulas are obtained for all the multipole moments in terms of the radiation pattern.

183 citations

01 Dec 1979
TL;DR: In this paper, it was shown that the distribution of lift which causes the least drag is reduced to the solution of the problem for systems of airfoils which are situated in a plane perpendicular to the direction of flight.
Abstract: Equations are derived to demonstrate which distribution of lifting elements result in a minimum amount of aerodynamic drag. The lifting elements were arranged (1) in one line, (2) parallel lying in a transverse plane, and (3) in any direction in a transverse plane. It was shown that the distribution of lift which causes the least drag is reduced to the solution of the problem for systems of airfoils which are situated in a plane perpendicular to the direction of flight.

183 citations

Journal ArticleDOI
TL;DR: In this article, fiber Bragg grating (FBG) sensors were applied for the detection of transverse cracks, which cause strain distribution within the gage length, in carbon fiber reinforced plastic (CFRP) cross-ply laminates.
Abstract: In the present research, fiber Bragg grating (FBG) sensors were applied for the detection of transverse cracks, which cause strain distribution within the gage length, in carbon fiber reinforced plastic (CFRP) cross-ply laminates. An uncoated FBG sensor was embedded in 0° ply on the border of 90° ply in a CFRP cross-ply laminate. The reflection spectra from the FBG sensor were measured at various tensile stresses. As a result, the reflection spectrum became broad and had some peaks with an increase of the transverse crack density in the 90° ply. After the crack density was saturated, the spectrum became narrow and had one large peak again. In order to confirm that the change in the spectrum was caused by transverse cracks, the spectra were calculated theoretically. The calculated result reproduced the change in the measured spectrum very well. These results show that the occurrence of transverse cracks can be detected from the change in the form of the reflection spectrum, and that the spectrum width at the half maximum is a good indicator for the quantitative evaluation of the transverse crack density in real time.

182 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effects of the electrical load resistance and cross-section geometry on the onset of galloping, which is due to a Hopf bifurcation.
Abstract: The concept of harvesting energy from transverse galloping oscillations of a bluff body with different cross-section geometries is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom of the body. The power levels that can be generated from these vibrations and the variations of these levels with the load resistance, cross-section geometry, and freestream velocity are determined. A representative model that accounts for the transverse displacement of the bluff body and harvested voltage is presented. The quasi-steady approximation is used to model the aerodynamic loads. A linear analysis is performed to determine the effects of the electrical load resistance and the cross-section geometry on the onset of galloping, which is due to a Hopf bifurcation. The normal form of this bifurcation is derived to determine the type (supercritical or subcritical) of the instability and to characterize the effects of the linear and nonlinear parameters on the level of harvested power near the bifurcation. The results show that the electrical load resistance and the cross-section geometry affect the onset speed of galloping. The results also show that the maximum levels of harvested power are accompanied with minimum transverse displacement amplitudes for all considered (square, D, and triangular) cross-section geometries, which points to the need for performing a coupled analysis of the system.

181 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
80% related
Laser
353.1K papers, 4.3M citations
79% related
Boundary value problem
145.3K papers, 2.7M citations
78% related
Magnetic field
167.5K papers, 2.3M citations
78% related
Finite element method
178.6K papers, 3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,178
20222,308
2021385
2020597
2019709
2018654