scispace - formally typeset
Search or ask a question
Topic

Transverse plane

About: Transverse plane is a research topic. Over the lifetime, 17069 publications have been published within this topic receiving 194059 citations. The topic is also known as: axial plane.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the galloping response of a circular cylinder fitted with three different splitter plates and free to oscillate transverse to a free stream has been investigated considering variations in plate length and plate porosity.

81 citations

Journal ArticleDOI
TL;DR: In this article, a grid-like mask is placed in front of the flash lamp so that heat is absorbed over a series of periodic parallel strips and the signal-to-noise ratio is increased thereby.

81 citations

Journal ArticleDOI
TL;DR: A novel way to detect transverse velocities is experimentally demonstrated using structured light beams, which are unique in the sense that their phases can be engineered such that each point in its transverse plane has an associated phase value.
Abstract: One procedure widely used to detect the velocity of a moving object is by using the Doppler effect. This is the perceived change in frequency of a wave caused by the relative motion between the emitter and the detector, or between the detector and a reflecting target. The relative movement, in turn, generates a time-varying phase which translates into the detected frequency shift. The classical longitudinal Doppler effect is sensitive only to the velocity of the target along the line-of-sight between the emitter and the detector (longitudinal velocity), since any transverse velocity generates no frequency shift. This makes the transverse velocity undetectable in the classical scheme. Although there exists a relativistic transverse Doppler effect, it gives values that are too small for the typical velocities involved in most laser remote sensing applications. Here we experimentally demonstrate a novel way to detect transverse velocities. The key concept is the use of structured light beams. These beams are unique in the sense that their phases can be engineered such that each point in its transverse plane has an associated phase value. When a particle moves across the beam, the reflected light will carry information about the particle's movement through the variation of the phase of the light that reaches the detector, producing a frequency shift associated with the movement of the particle in the transverse plane.

81 citations

Journal ArticleDOI
TL;DR: A transverse optical mode was observed in a one-dimensional Yukawa chain, verifying that the optical mode has negative dispersion, with phase and group velocities that are oppositely directed.
Abstract: A transverse optical mode was observed in a one-dimensional Yukawa chain. Charged particles, suspended in a strongly coupled dusty plasma, were arranged in a 1D periodic structure. Particle displacement in the direction perpendicular to the chain was restored by the confining potential. The dispersion relation of phonons was measured, verifying that the optical mode has negative dispersion, with phase and group velocities that are oppositely directed. A theoretical dispersion relation is presented and compared to the experiment and a molecular dynamics simulation.

81 citations

Journal ArticleDOI
TL;DR: In this article, the effects of variation in the lamination and geometric parameters, and boundary conditions of multi-layered composite panels on the accuracy of the detailed response characteristics obtained by five different modeling approaches were made.
Abstract: A study is made of the effects of variation in the lamination and geometric parameters, and boundary conditions of multi-layered composite panels on the accuracy of the detailed response characteristics obtained by five different modeling approaches. The modeling approaches considered include four two-dimensional models, each with five parameters to characterize the deformation in the thickness direction, and a predictor-corrector approach with twelve displacement parameters. The two-dimensional models are first-order shear deformation theory, third-order theory; a theory based on trigonometric variation of the transverse shear stresses through the thickness, and a discrete layer theory. The combination of the following four key elements distinguishes the present study from previous studies reported in the literature: (1) the standard of comparison is taken to be the solutions obtained by using three-dimensional continuum models for each of the individual layers; (2) both mechanical and thermal loadings are considered; (3) boundary conditions other than simply supported edges are considered; and (4) quantities compared include detailed through-the-thickness distributions of transverse shear and transverse normal stresses. Based on the numerical studies conducted, the predictor-corrector approach appears to be the most effective technique for obtaining accurate transverse stresses, and for thermal loading, none of the two-dimensional models is adequate for calculating transverse normal stresses, even when used in conjunction with three-dimensional equilibrium equations.

81 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
80% related
Laser
353.1K papers, 4.3M citations
79% related
Boundary value problem
145.3K papers, 2.7M citations
78% related
Magnetic field
167.5K papers, 2.3M citations
78% related
Finite element method
178.6K papers, 3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,178
20222,308
2021385
2020597
2019709
2018654