scispace - formally typeset
Search or ask a question
Topic

Triatomic molecule

About: Triatomic molecule is a research topic. Over the lifetime, 3258 publications have been published within this topic receiving 104690 citations.


Papers
More filters
Book
01 Jan 1978
TL;DR: In this article, the normal modes of vibration are illustrated and corresponding vibrational frequencies are listed for each type, including diatomic, triatomic, fouratomic, five-atomic, six-atomic and seven-atomic types.
Abstract: Inorganic molecules (ions) and ligands are classified into diatomic, triatomic, four-atomic, five-atomic, six-atomic, and seven-atomic types, and their normal modes of vibration are illustrated and the corresponding vibrational frequencies are listed for each type. Molecules of other types are grouped into compounds of boron, carbon, silicon, nitrogen, phosphorus, and sulfur, and the structures and infrared (IR)/Raman spectra of select examples are shown for each group. Group frequency charts including band assignments are shown for phosphorus and sulfur compounds. Other group frequency charts include hydrogen stretching frequencies, halogen stretching frequencies, oxygen stretching and bending frequencies, inorganic ions, and metal complexes containing simple coordinating ligands. Keywords: inorganic compounds; coordination compounds; diatomic molecules (ligands); triatomic molecules (ligands); four-atomic molecules (ligands); five-atomic molecules (ligands); six-atomic molecules (ligands); seven-atomic molecules (ligands); boron compounds; carbon compounds; silicon compounds; nitrogen compounds; phosphorus compounds; sulfur compounds; group frequency charts

15,951 citations

Book
01 Jan 1997
TL;DR: In this article, the normal modes of vibration are illustrated and corresponding vibrational frequencies are listed for each type, including diatomic, triatomic, fouratomic, five-atomic, six-atomic and seven-atomic types.
Abstract: Inorganic molecules (ions) and ligands are classified into diatomic, triatomic, four-atomic, five-atomic, six-atomic, and seven-atomic types, and their normal modes of vibration are illustrated and the corresponding vibrational frequencies are listed for each type. Molecules of other types are grouped into compounds of boron, carbon, silicon, nitrogen, phosphorus, and sulfur, and the structures and infrared (IR)/Raman spectra of select examples are shown for each group. Group frequency charts including band assignments are shown for phosphorus and sulfur compounds. Other group frequency charts include hydrogen stretching frequencies, halogen stretching frequencies, oxygen stretching and bending frequencies, inorganic ions, and metal complexes containing simple coordinating ligands. Keywords: inorganic compounds; coordination compounds; diatomic molecules (ligands); triatomic molecules (ligands); four-atomic molecules (ligands); five-atomic molecules (ligands); six-atomic molecules (ligands); seven-atomic molecules (ligands); boron compounds; carbon compounds; silicon compounds; nitrogen compounds; phosphorus compounds; sulfur compounds; group frequency charts

2,716 citations

Journal ArticleDOI
TL;DR: In this paper, the authors modified the self-consistent molecular orbital theory with complete neglect of differential overlap (CNDO) presented in earlier papers and applied it to symmetrical triatomic (AB2) and tetratomic (AB3) molecules.
Abstract: The approximate self‐consistent molecular orbital theory with complete neglect of differential overlap (CNDO) presented in earlier papers has been modified in two ways. (a) Atomic matrix elements are chosen empirically using data on both atomic ionization potentials and electron affinities. (b) Certain penetration‐type terms, which led to excess bonding between formally nonbonded atoms in the previous treatment, have been omitted. The new method (denoted by CNDO/2) has been applied to symmetrical triatomic (AB2) and tetratomic (AB3) molecules, for a range of bond angles. The theory leads to calculated equilibrium angles, dipole moments, and bending force constants which are in reasonable agreement with experimental values in most cases.

1,782 citations

BookDOI
TL;DR: In this paper, the authors present an approach to calculate the energy levels of Diatomic molecules in terms of the number of excited states in the molecules and the lifetime of these states.
Abstract: 1. Introduction.- 2. Units of Physical Quantities.- 2.1 Systems of Units in Physics.- 2.2 Fundamental Physical Constants.- 2.3 Systems of Units Based on "Natural Standards".- 2.4 Tables of Conversion Factors.- I Atoms and Atomic Ions.- 3. Isotopic Composition, Atomic Mass Table and Atomic Weights of the Elements.- 3.1 Parameters of Stable and Long-Lived Isotopes.- 3.2 Atomic Weights of the Elements and Atomic Mass Table.- 4. Structure of Atomic Electron Shells.- 4.1 Electron Configurations and Ground-State Terms.- 4.2 The Periodic Table.- 4.3 Parameters of Wavefunctions for Valence Electrons in Atoms, Positive and Negative Ions.- 5. Energetics of Neutral Atoms.- 5.1 Ionization Potentials of Atoms.- 5.2 Quantum Defects of Atomic Rydberg States.- 5.3 Fine-Structure Splitting of Atomic Energy Levels.- 5.4 Hyperfine Structure of Atomic Energy Levels.- 5.5 Isotope Shifts of Low-Lying Atomic Levels.- 5.6 Atoms in Static Electric and Magnetic Fields. Atomic Polarizabilities and Magnetic Susceptibilities.- 6. Energetics of Atomic Ions.- 6.1 Ionization Potentials of Atomic Ions.- 6.2 Electron Affinities of Atoms.- 6.3 Energy Levels of Multiply Charged Atomic Ions.- 7. Spectroscopic Characteristics of Neutral Atoms.- 7.1 Low-Lying Atomic Terms.- 7.2 Diagrams of Atomic Energy Levels and Grotrian Diagrams.- 7.3 Atomic Oscillator Strengths in Absorption.- 7.4 Lifetimes of Resonant Excited States in Atoms.- 7.5 Energy Levels and Lifetimes for Metastable States in Atoms.- 7.6 Lifetimes of Atomic Rydberg States.- 8. Spectroscopic Characteristics of Atomic Positive Ions.- 8.1 Low-Lying Terms of Singly Ionized Atoms.- 8.2 Lifetimes of Resonant Excited States in Atomic Ions.- 8.3 Energy Levels and Lifetimes for Metastable States in Singly Ionized Atoms.- 8.4 Optical Parameters of Multiply Charged Atomic Ions.- II Molecules and Molecular Ions.- 9. Interaction Potentials Between Atomic and Molecular Species.- 9.1 Van der Waals Coefficients for Interatomic Multipole Interactions.- 9.2 Long-Range Exchange Interactions of Atoms.- 9.3 Short-Range Repulsive Interactions Between Atomic and Molecular Species.- 10. Diatomic Molecules.- 10.1 Electron Configurations of Diatomic Molecules.- 10.2 Asymptotic Parameters of Wavefunctions for Valence Electrons in Diatomic Molecules.- 10.3 Spectroscopic Constants of Diatomic Molecules.- 10.4 Potential Energy Curves.- 10.5 Ionization Potentials of Diatomic Molecules.- 10.6 Dissociation Energies of Diatomic Molecules.- 10.7 Lifetimes of Excited Electron States in Diatomic Molecules.- 10.8 Parameters of Excimer Molecules.- 10.9 Einstein Coefficients for Spontaneous Emission from Vibrationally Excited Diatomic Molecules.- 11. Diatomic Molecular Ions.- 11.1 Electron Configurations and Asymptotic Parameters of Wavefunctions for Valence Electrons in Diatomic Molecular Ions.- 11.2 Spectroscopic Constants of Diatomic Molecular Ions.- 11.3 Dissociation Energies of Diatomic Molecular Ions.- 11.4 Electron Affinities of Diatomic Molecules.- 11.5 Proton Affinities of Atoms.- 11.6 Lifetimes of Excited Electron States in Diatomic Molecular Ions.- 12. Van der Waals Molecules.- 12.1 Potential Well Parameters of Van der Waals Molecules.- 12.2 Potential Well Parameters of Van der Waals Molecular Ions.- 12.3 Ionization Potentials of Van der Waals Molecules.- 13. Polyatomic Molecules.- 13.1 Constants of Triatomic Molecules.- 13.2 Ionization Potentials of Polyatomic Molecules.- 13.3 Bond Dissociation Energies of Polyatomic Molecules.- 13.4 Lifetimes of Vibrationally Excited Polyatomic Molecules.- 14. Polyatomic Molecular Ions.- 14.1 Bond Dissociation Energies of Complex Positive Ions.- 14.2 Bond Dissociation Energies of Complex Negative Ions.- 14.3 Electron Affinities of Polyatomic Molecules.- 14.4 Proton Affinities of Molecules.- 15. Electrical Properties of Molecules.- 15.1 Dipole Moments of Molecules.- 15.2 Molecular Polarizabilities.- 15.3 Quadrupole Moments of Molecules.- Mathematical Appendices.- A. Coefficients of Fractional Parentage.- B. Clebsch-Gordan Coefficients.

1,688 citations

Book
22 Dec 2012
TL;DR: In this paper, the authors present a review of the literature on electron spectroscopy and its application in the field of computer vision. But they do not discuss the specific applications of electron spectrograms.
Abstract: 1 Introduction.- 1. History.- 2. Scope of Present Book and Review of Past Books.- 3. Name-Calling.- 4. Areas Related to Electron Spectroscopy Not to be Discussed in Detail.- 4.1. Electron-Impact Spectroscopy.- 4.2. Photoemission.- 4.3. Penning Ionization Spectroscopy.- 4.4. Ion Neutralization Spectroscopy.- 5. Fields Related to Electron Spectroscopy.- 2 Instrumentation and Experimental Procedures.- 1. Source Volume.- 1.1. Excitation Devices.- 1.1.1. Electron Gun.- 1.1.2. X-Ray Tube.- 1.1.3. Synchrotron Radiation.- 1.1.4. Vacuum-UV Sources.- 1.2. Target Sample.- 1.2.1. Gases.- 1.2.2. Solids.- 1.2.3. Condensed Vapors, Liquids, and Targets at Other Than Room Temperature.- 1.3. Chamber for Angular Distribution Studies.- 1.4. Preacceleration and Deceleration.- 2. Analyzer.- 2.1. Cancellation of Magnetic Fields.- 2.1.1. Helmholtz Coils.- 2.1.2. Magnetic Shielding.- 2.2. Types of Analyzers.- 2.2.1. Retarding Grid.- 2.2.2. Dispersion.- 3. Detector Systems and Data Analysis.- 3.1. Single-Channel Detector.- 3.2. Position-Sensitive Detector.- 3.3. Scanning the Spectrum.- 3.4. Data Analysis.- 4. New Developments.- 5. Review of Commercial Instruments.- 5.1. AEI.- 5.2. Du Pont.- 5.3. Hewlett-Packard.- 5.4. McPherson.- 5.5. Perkin-Elmer.- 5.6. Physical Electronics.- 5.7. McCrone-RCI.- 5.8. Vacuum Generators, Inc..- 5.9. Varian.- 5.10. Others.- 3 Fundamental Concepts.- 1. Photoelectric Effect.- 2. Binding Energy.- 3. Final States and the Sudden Approximation.- 3.1. Spin-Orbit Splitting.- 3.2. Multiplet Splitting.- 3.3. Jahn-Teller Splitting.- 3.4. Electron Shakeoff and Shakeup.- 3.5. Configuration Interaction.- 3.6. Koopmans' Theorem and the Sudden Approximation.- 3.7. Vibrational and Rotational Final States.- 4. Atomic Wave Functions.- 5. Molecular Orbital Theory.- 5.1. Theoretical Models.- 5.1.1. Ab Initio Calculations.- 5.1.2. Semiempirical Calculations.- 5.2. Basis Set Extension and MO Mixing.- 5.3. Atomic and Molecular Orbital Nomenclature.- 5.3.1. Atoms.- 5.3.2. Molecules.- 4 Photoelectron Spectroscopy of the Outer Shells.- 1. Introduction.- 2. Energy Level Scheme.- 2.1. Binding Energy.- 2.2. Final States.- 2.2.1. Spin-Orbit Splitting.- 2.2.2. Multiplet Splitting due to Spin Coupling.- 2.2.3. Jahn-Teller Effect.- 2.2.4. Electron Shakeoff and Shakeup.- 2.2.5. Configuration Interaction.- 2.2.6. Resonance Absorption.- 2.2.7. Collision Peaks.- 3. Identification of the Orbital.- 3.1. Ionization Potentials.- 3.1.1. Characteristic Ionization Bands.- 3.1.2. Effects of Substituents.- 3.1.3. Sum Rule.- 3.1.4. The Perfluoro Effect.- 3.1.5. Dependence on Steric Effects.- 3.2. Identification of Orbitals by Vibrational Structure.- 3.3. Identification of Molecular Orbitals from Intensities of Ionization Bands.- 3.4. Identification of Molecular Orbitals by Angular Distribution.- 4. Comparison of PESOS with Other Experimental Data.- 4.1. Optical Spectroscopy.- 4.2. Mass Spectroscopy.- 5. Survey of the Literature on PESOS.- 5.1. Atoms.- 5.2. Diatomic Molecules.- 5.2.1. H2.- 5.2.2. N2 and CO.- 5.2.3. O2 and NO.- 5.2.4. Diatomic Molecules Containing Halogen.- 5.3. Triatomic Molecules.- 5.3.1. Linear Triatomic Molecules.- 5.3.2. Bent Triatomic Molecules.- 5.4. Organic Molecules.- 5.4.1. Methane, Alkanes, and Tetrahedral Symmetry.- 5.4.2. Unsaturated Aliphatics.- 5.4.3. Ring Compounds.- 5.4.4. Multiring Compounds.- 5.4.5. Organic Halides.- 5.4.6. Miscellaneous Organic Compounds Containing Oxygen, Nitrogen, Sulfur, and Phosphorus.- 5.5. Organometallics and Miscellaneous Inorganic Polyatomic Molecules.- 5.6. Ions, Transient Species, and Other Special Studies in PESOS.- 6. Studies on Solids.- 7. Analytical Applications of PESOS.- 5 Photoelectron Spectroscopy of the Inner Shells.- 1. Atomic Structure.- 2. Theoretical Basis of Chemical Shifts of Core Electrons.- 2.1. Valence Shell Potential Model.- 2.2. Effect of Neighboring Atoms.- 2.3. Calculation of Net Charge from Electronegativity.- 2.4. Calculation of Net Charge from Semiempirical MO.- 2.5. Use of Ab Initio Calculations for Chemical Shifts.- 2.6. Correlation of Chemical Shift with Thermochemical Data.- 3. Summary of Data on Chemical Shifts as a Function of the Periodic Table.- 3.1. Carbon.- 3.2. Nitrogen and Phosphorus.- 3.3. Sulfur and Oxygen.- 3.4. Group IIIA, IVA, VA, and VIA Elements.- 3.4.1. Group IIIA: B, Al, Ga, In, and Tl.- 3.4.2. Group IVA: C, Si, Ge, Sn, and Pb.- 3.4.3. Group VA: N, P, As, Sb, and Bi.- 3.4.4. Group VIA: O, S, Se, and Te.- 3.5. Halides and Rare Gases.- 3.6. Alkali Metals and Alkaline Earths.- 3.7. Transition Metals.- 3.7.1. First Transition Metal Series: Sc, Ti, V, Cr, Mn, Fe, Co, Ni.- 3.7.2. Second Transition Metal Series: Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd.- 3.7.3. Third Transition Metal Series: Hf, Ta, W, Re, Os, Ir, Pt.- 3.8. Groups IB and IIB: Cu, Ag, Au, Zn, Cd, Hg.- 3.9. Rare Earths and Actinides.- 4. Special Topics on Shifts in Core Binding Energies.- 4.1. Experimental and Interpretive Problems in PESIS.- 4.1.1. Comparative Problems in the Gas and Solid Phases.- 4.1.2. Charging.- 4.1.3. Definition of Binding Energy for Insulators.- 4.1.4. Binding Energy of Surface Atoms.- 4.1.5. Radiation Effects.- 4.1.6. Linewidths.- 4.2. Inorganic Compounds.- 4.2.1. Multiple Chemical Environment.- 4.2.2. Coordination Complexes.- 4.3. Organic Compounds.- 4.3.1. Resonance.- 4.3.2. Substituent Effects.- 4.3.3. Group Analysis.- 4.3.4. Specific Studies on Organic Molecules.- 4.4. Comparison of Core Electron Binding Energy Shifts with Other Physical Quantities.- 4.4.1. Mossbauer Isomer Shift.- 4.4.2. NMR.- 4.4.3. Other Physical Data.- 5. Other Applications of PESIS.- 5.1. Multicomponent Structure.- 5.1.1. Multiplet or Exchange Splitting.- 5.1.2. Electron Shakeoff and Shakeup.- 5.1.3. Configuration Interaction.- 5.1.4. Characteristic Energy Losses.- 5.1.5. Determining the Nature of Multicomponent Structure.- 5.2. PESIS for Surface Studies.- 5.3. Angular Studies with PESIS.- 6. Use of PESIS for Applied Research.- 6.1. PESIS as an Analytical Tool.- 6.2. Biological Systems.- 6.3. Geology.- 6.4. Environmental Studies.- 6.5. Surface Studies.- 6.6. Polymers and Alloys.- 6.7. Radiation Studies.- 6.8. Industrial Uses.- 6 Auger Electron Spectroscopy.- 1. Theory of the Auger Process.- 2. Comparison of the Auger Phenomenon with the Photoelectric Effect and X-Ray Emission.- 3. Use of Auger Spectroscopy for Gases.- 3.1. Atoms.- 3.2. Molecules.- 3.3. Study of Ionization Phenomena by Auger Spectroscopy.- 3.4. Autoionization.- 3.5. Auger Spectroscopy for Use in Gas Analysis.- 4. Use of Auger Spectroscopy in the Study of Solids.- 4.1. Special Problems Encountered on Using AES with Solids.- 4.1.1. Variables Concerned with Production of Auger Electrons.- 4.1.2. High-Energy Satellite Lines.- 4.1.3. Characteristic Energy Losses.- 4.1.4. Charging in Nonconducting Samples.- 4.2. High-Resolution Auger Spectroscopy with Solids.- 4.3. General Analytical Use of Auger Spectroscopy.- 4.4. Use of Auger Spectroscopy in the Study of Surfaces.- 4.4.1. General Considerations.- 4.4.2. Literature Survey of Surface Applications.- 4.5. Other Methods for Surface Analysis.- 4.5.1. Comparison of PESIS and Auger Spectroscopy for Surface Studies.- 4.5.2. Methods of Surface Analysis Other than AES and PESIS.- Appendixes.- 1. Atomic Binding Energies for Each Subshell for Elements Z = 1-106.- 3. Compilation of Data on Shifts in Core Binding Energies.- 4. Acronyms and Definitions of Special Interest in Electron Spectroscopy.- References.

661 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
92% related
Excited state
102.2K papers, 2.2M citations
88% related
Ground state
70K papers, 1.5M citations
87% related
Molecule
52.4K papers, 1.2M citations
86% related
Absorption spectroscopy
66.1K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202248
202143
202047
201933
201834