Topic
Trichoderma harzianum
About: Trichoderma harzianum is a(n) research topic. Over the lifetime, 4731 publication(s) have been published within this topic receiving 96796 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: Root colonization by Trichoderma spp.
Abstract: Trichoderma spp. are free-living fungi that are common in soil and root ecosystems. Recent discoveries show that they are opportunistic, avirulent plant symbionts, as well as being parasites of other fungi. At least some strains establish robust and long-lasting colonizations of root surfaces and penetrate into the epidermis and a few cells below this level. They produce or release a variety of compounds that induce localized or systemic resistance responses, and this explains their lack of pathogenicity to plants. These root-microorganism associations cause substantial changes to the plant proteome and metabolism. Plants are protected from numerous classes of plant pathogen by responses that are similar to systemic acquired resistance and rhizobacteria-induced systemic resistance. Root colonization by Trichoderma spp. also frequently enhances root growth and development, crop productivity, resistance to abiotic stresses and the uptake and use of nutrients.
2,875 citations
[...]
TL;DR: Biochemical analyses revealed that inoculation with Trichodermainitiated increased peroxidase and chitinase activities within 48 and 72 h, respectively, providing evidence that T. harzianum may induce systemic resistance mechanisms in cucumber plants.
Abstract: The potential of the biocontrol agent Trichoderma harzianum T-203 to trigger plant defense responses was investigated by inoculating roots of cucumber seedlings with Trichoderma in an aseptic, hydroponic system. Trichoderma-treated plants were more developed than nontreated plants throughout the experiment. Electron microscopy of ultrathin sections from Trichoderma-treated roots revealed penetration of Trichoderma into the roots, restricted mainly to the epidermis and outer cortex. Strengthening of the epidermal and cortical cell walls was observed, as was the deposition of newly formed barriers. These typical host reactions were found beyond the sites of potential fungal penetration. Wall appositions contained large amounts of callose and infiltrations of cellulose. The wall-bound chitin in Trichoderma hyphae was preserved, even when the hyphae had undergone substantial disorganization. Biochemical analyses revealed that inoculation with Trichoderma initiated increased peroxidase and chitinase activities within 48 and 72 h, respectively. These results were observed for both the roots and the leaves of treated seedlings, providing evidence that T. harzianum may induce systemic resistance mechanisms in cucumber plants.
729 citations
[...]
TL;DR: This is the first report of the ability of a Trichoderma strain to solubilize some insoluble or sparingly soluble minerals via three possible mechanisms: acidification of the medium, production of chelating metabolites, and redox activity.
Abstract: We investigated the capability of the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22 (T-22) to solubilize in vitro some insoluble or sparingly soluble minerals via three possible mechanisms: acidification of the medium, production of chelating metabolites, and redox activity. T-22 was able to solubilize MnO2, metallic zinc, and rock phosphate (mostly calcium phosphate) in a liquid sucrose-yeast extract medium, as determined by inductively coupled plasma emission spectroscopy. Acidification was not the major mechanism of solubilization since the pH of cultures never fell below 5.0 and in cultures containing MnO2 the pH rose from 6.8 to 7.4. Organic acids were not detected by high-performance thin-layer chromatography in the culture filtrates. Fe2O3, MnO2, Zn, and rock phosphate were also solubilized by cell-free culture filtrates. The chelating activity of T-22 culture filtrates was determined by a method based on measurement of the equilibrium concentration of the chrome azurol S complex in the presence of other chelating substances. A size exclusion chromatographic separation of the components of the culture filtrates indicated the presence of a complexed form of Fe but no chelation of Mn. In liquid culture, T. harzianum T-22 also produced diffusible metabolites capable of reducing Fe(III) and Cu(II), as determined by the formation of Fe(II)-Na2-bathophenanthrolinedisulfonic acid and Cu(I)-Na2-2, 9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid complexes. This is the first report of the ability of a Trichoderma strain to solubilize insoluble or sparingly soluble minerals. This activity may explain, at least partially, the ability of T-22 to increase plant growth. Solubilization of metal oxides by Trichoderma involves both chelation and reduction. Both of these mechanisms also play a role in biocontrol of plant pathogens, and they may be part of a multiple-component action exerted by T-22 to achieve effective biocontrol under a variety of environmental conditions.
716 citations
[...]
TL;DR: The development of Pseudomonas for the control of Pythium diseases in hydroponics and Pseudozyma flocculosa for theControl of powdery mildew by two Canadian research programs is presented.
Abstract: The controlled environment of greenhouses, the high value of the crops, and the limited number of registered fungicides offer a unique niche for the biological control of plant diseases. During the past ten years, over 80 biocontrol products have been marketed worldwide. A large percentage of these have been developed for greenhouse crops. Products to control soilborne pathogens such as Sclerotinia, Pythium, Rhizoctonia and Fusarium include Coniothyrium minitans, species of Gliocladium, Trichoderma, Streptomyces, and Bacillus, and nonpathogenic Fusarium. Products containing Trichoderma, Ampelomyces quisqualis, Bacillus, and Ulocladium are being developed to control the primary foliar diseases, Botrytis and powdery mildew. The development of Pseudomonas for the control of Pythium diseases in hydroponics and Pseudozyma flocculosa for the control of powdery mildew by two Canadian research programs is presented. In the future, biological control of diseases in greenhouses could predominate over chemical pesticides, in the same way that biological control of greenhouse insects predominates in the United Kingdom. The limitations in formulation, registration, and commercialization are discussed, along with suggested future research priorities.
564 citations
[...]
01 Jan 2011
TL;DR: Isolates of T. harzianum were found to differ in the levels of hydrolytic enzymes produced when mycelium of S. rolfsii, Rhizoctonia solani, and Pythium aphanidermatum in soil was attacked, correlated with the ability of each of the Trichoderma isolates to control the respective soilborne pathogens.
482 citations