scispace - formally typeset
Search or ask a question
Topic

Trichoderma harzianum

About: Trichoderma harzianum is a research topic. Over the lifetime, 4731 publications have been published within this topic receiving 96796 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings of the present study provide a detailed insight into the physio-biochemical and molecular processes leading to low temperature tolerance in T. harzianum-inoculated tomato plants.

64 citations

Journal ArticleDOI
TL;DR: The results suggest that the induction of plant basal resistance and the attenuation of the hormonal disruption caused by F. oxysporum are both mechanisms by which T. harzianum can control Fusarium wilt in melon plants; while the mechanisms involving G. intraradices seem to be independent of SA and JA signaling.
Abstract: The plant hormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) are known to play crucial roles in plant disease and pest resistance. Changes in the concentrations of these plant hormones in melon plant shoots, as a consequence of the interaction between the plant, the pathogen Fusarium oxysporum, the antagonistic microorganism Trichoderma harzianum, and the arbuscular mycorrhizal fungus Glomus intraradices were investigated. Attack by F. oxysporum activated a defensive response in the plant, mediated by the plant hormones SA, JA, ET, and ABA, similar to the one produced by T. harzianum. When inoculated with the pathogen, both T. harzianum and G. intraradices attenuated the plant response mediated by the hormones ABA and ET elicited by the pathogen attack. T. harzianum was also able to attenuate the SA-mediated response. In the three-way interaction (F. oxysporum–T. harzianum–G. intraradices), although a synergistic effect in reducing disease incidence was found...

63 citations

Journal ArticleDOI
TL;DR: Activities of the cell wall-degrading enzymes (CWDEs) were significantly higher in media with deactivated B. cinerea mycelia than in other media, suggesting that thecell wall of B.cinerea is indeed the primary target of T. harzianum ETS 323 in the biocontrol mechanism.

63 citations

Journal ArticleDOI
TL;DR: An antagonistic mechanism based on initiation of germination in sufficiently concentrated inocula suggests that at suboptimal temperatures the efficacy of Trichoderma antagonists might be improved by conidia activation prior to application.
Abstract: The effect of preliminary nutrient activation on the ability of conidia of the antagonist Trichoderma harzianum (atroviride) P1 to suppress Botrytis cinerea was investigated in laboratory, greenhouse, and field trials. Preliminary nutrient activation at 21 degrees C accelerated subsequent germination of the antagonist at temperatures from 9 to 21 degrees C; at >/=18 degrees C, the germination time of preactivated T. harzianum P1 conidia did not differ significantly from that of B. cinerea. When coinoculated with B. cinerea, concentrated inocula of preactivated but ungerminated T. harzianum P1 conidia reduced in vitro germination of the pathogen by >/=87% at 12 to 25 degrees C; initially quiescent conidia achieved this level of suppression only at 25 degrees C. Application of quiescent T. harzianum P1 conidia to detached strawberry flowers in moist chambers reduced infection by B. cinerea by >/=85% at 24 degrees C, but only by 35% at 12 degrees C. Preactivated conidia reduced infection by >/=60% at 12 degrees C. Both quiescent and preactivated conidia significantly reduced latent infection in greenhouse-grown strawberries at a mean temperature of 19 degrees C, whereas only preactivated conidia were effective in the field at a mean temperature of 14 degrees C on the day of treatment application. An antagonistic mechanism based on initiation of germination in sufficiently concentrated inocula suggests that at suboptimal temperatures the efficacy of Trichoderma antagonists might be improved by conidia activation prior to application.

63 citations

Journal ArticleDOI
TL;DR: The results indicate that the treatment with the invert emulsion formulation of T. harzianum protected fruit from infection by the primary postharvest pathogens of the fruit tested for up to 2 months and reduced the diameters of decay lesion up to 86% and is a promising treatment to prolong the postHarvest shelf-life of fresh fruit.

63 citations


Network Information
Related Topics (5)
Rhizosphere
21.9K papers, 756.3K citations
82% related
Shoot
32.1K papers, 693.3K citations
82% related
Germination
51.9K papers, 877.9K citations
81% related
Sowing
33.8K papers, 273.4K citations
81% related
Oryza sativa
12.2K papers, 303.5K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023163
2022383
2021200
2020254
2019251
2018228