scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Journal ArticleDOI
TL;DR: The interactions of monocomponent cellulases with cellulose and lignin substrates were investigated by using thin films supported on quartz crystal microgravimetry (QCM) resonators and EG-I displayed a clearly different interaction profile as a function of contact time registered by QCM.

78 citations

Journal ArticleDOI
TL;DR: Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific.
Abstract: We investigated the effect of pretreatment on the physicochemical characteristics—crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU)/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.

78 citations

Journal ArticleDOI
TL;DR: Analysis of the associated biological functions and the representation of glycoside hydrolase family members within the two secretomes indicated that the S4F8 secretome contained a higher diversity of main and side chain hemicellulases and β-glucosidases, and an increased abundance of some of these proteins compared with the Rut C30 secretome.
Abstract: Background The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Trichoderma reesei Rut C30, cultured on sugarcane bagasse (SCB) using solid-state fermentation (SSF).

78 citations

Journal ArticleDOI
TL;DR: An experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw and the developed model could reliably predict hydrolytic yields of enzyme mixtures in the studied domain.
Abstract: An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.

78 citations

Journal ArticleDOI
TL;DR: A cDNA encoding for the glucoamylase P enzyme (GAMP) of the fungus Hormoconis resinae was introduced into the cellulolytic filamentous fungus Trichoderma reesei under the control of the promoter of the major cellulase gene (cbh1) of Trichodma.
Abstract: A cDNA encoding for the glucoamylase P enzyme (GAMP) of the fungus Hormoconis resinae was introduced into the cellulolytic filamentous fungus Trichoderma reesei under the control of the promoter of the major cellulase gene (cbh1) of Trichoderma. The transforming vector plasmid used was found to be integrated into the genome of T. reesei at various locations and in multiple copies. The size of the GAMP secreted by Trichoderma varied because of different glycosylation patterns. The best transformant strains secreted about 700 mg/l of active GAMP, which is 20-fold more than obtained with H. resinae.

78 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142