scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Journal ArticleDOI
TL;DR: It was suggested that CBH II may be one of the key enzymes involved in the synergistic actions during cellulose hydrolysis, which caused specific changes in the surface features of highly crystalline celluloses.

77 citations

Journal ArticleDOI
TL;DR: It is concluded that the expression of the four α-l-arabinofuranosidases of H. jecorina for growth on arabinan requires an early pathway intermediate, the first enzyme of the pathway XYL1, and in the case of abf2 and bxl1 also the function of the cellulase regulator XYR1.
Abstract: Hypocrea jecorina (anamorph: Trichoderma reesei) can grow on plant arabinans by the aid of secreted arabinan-degrading enzymes. This growth on arabinan and its degradation product l-arabinose requires the operation of the aldose reductase XYL1 and the l-arabinitol dehydrogenase LAD1. Growth on arabinan and l-arabinose is also severely affected in a strain deficient in the general cellulase and hemicellulase regulator XYR1, but this impairment can be overcome by constitutive expression of the xyl1 encoding the aldose reductase. An inspection of the genome of H. jecorina reveals four genes capable of degrading arabinan, i.e., the α-l-arabinofuranosidase encoding genes abf1, abf2, and abf3 and also bxl1, which encodes a β-xylosidase with a separate α-l-arabinofuranosidase domain and activity but no endo-arabinanase. Transcriptional analysis reveals that in the parent strain QM9414 the expression of all of these genes is induced by l-arabinose and to a lesser extent by l-arabinitol and absent on d-glucose. Induction by l-arabinitol, however, is strongly enhanced in a Δlad1 strain lacking l-arabinitol dehydrogenase activity and severely impaired in an aldose reductase (Δxyl1) strain, suggesting a cross talk between l-arabinitol and the aldose reductase XYL1 in an α-l-arabinofuranosidase gene expression. Strains bearing a knockout in the cellulase regulator xyr1 do not show any induction of abf2 and bxl1, and this phenotype cannot be reverted by constitutive expression of xyl1. The loss of function of xyr1 has also a slight effect on the expression of abf1 and abf3. We conclude that the expression of the four α-l-arabinofuranosidases of H. jecorina for growth on arabinan requires an early pathway intermediate (l-arabinitol or l-arabinose), the first enzyme of the pathway XYL1, and in the case of abf2 and bxl1 also the function of the cellulase regulator XYR1.

77 citations

Journal ArticleDOI
TL;DR: A major β-xylosidase, XylA, and its encoding gene were characterized and it was found that the deduced amino acid sequence shows high similarity to Aspergillus nidulans XlnD, AsperGillus niger Xln D, and Trichoderma reesei BxII.
Abstract: β-Xylosidase secreted by the shoyu koji mold, Aspergillus oryzae, is the key enzyme responsible for browning of soy sauce. To investigate the role of β-xylosidase in the brown color formation, a major β-xylosidase, XylA, and its encoding gene were characterized. β-Xylosidase XylA was purified to homogeneity from culture filtrates of A. oryzae KBN616. The optimum pH and temperature of the enzyme were found to be 4.0 and 60°C, respectively, and the molecular mass was estimated to be 110 kDa based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The xylA gene comprises 2,397 bp with no introns and encodes a protein consisting of 798 amino acids (86,475 Da) with 14 potential N-glycosylation sites. The deduced amino acid sequence shows high similarity to Aspergillus nidulans XlnD (70%), Aspergillus niger XlnD (64%), and Trichoderma reesei BxII (63%). The xylA gene was overexpressed under control of the strong and constitutive A. oryzae TEF1 promoter. One of the A. oryzae transformants produced approximately 13 times more of the enzyme than did the host strain. The partial-length antisense xylA gene expressed under control of the A. oryzae TEF1 promoter decreased the β-xylosidase level in A. oryzae to about 20% of that of the host strain.

77 citations

Journal ArticleDOI
TL;DR: This review summarizes the key findings of several recent studies using N. crassa to further understanding the mechanisms of plant cell wall deconstruction by filamentous fungi.
Abstract: Filamentous fungi are the main source of enzymes used to degrade lignocellulose to fermentable sugars for the production of biofuels. While the most commonly used organism for the production of cellulases in an industrial setting is Trichoderma reesei (Hypocrea jecorina), recent work in the model filamentous fungus Neurospora crassa has shown that the variety of molecular, genetic and biochemical techniques developed for this organism can expedite analyses of the complexities involved in the utilization of lignocellulose as a source of carbon. These include elucidating regulatory networks associated with plant cell wall deconstruction, the identification of signaling molecules necessary for induction of the expression of genes encoding lignocellulolytic enzymes and the characterization of new cellulolytic enzymatic activities. In particular, the availability of a full genome deletion strain set for N. crassa has expedited high throughput screening for mutants that display a cellulolytic phenotype. This review summarizes the key findings of several recent studies using N. crassa to further understanding the mechanisms of plant cell wall deconstruction by filamentous fungi.

77 citations

Journal ArticleDOI
TL;DR: The number of spots giving a clear signal but finding no match in the databases suggests that a majority of proteins associated with a filamentous fungal cell wall, are novel.
Abstract: A total of 220 cell envelope-associated proteins were successfully extracted and separated from Trichoderma reesei mycelia actively synthesizing and secreting proteins and from mycelia in which the secretion of proteins are low. Altogether 56 spots were examined by nanoelectrospray tandem mass spectrometry and amino acid sequence was obtained for 32 spots. From these, 20 spots were identified by Advanced BLAST searches against all databases available to BLAST. The most abundant protein in both types of mycelia was HEX1, the major protein in Woronin body, a structure unique to filamentous fungi. Other proteins identified were vacuolar protease A, enolase, glyceraldehyde-3-phosphate dehydrogenase, transaldolase, protein disulfide isomerase, mitochondrial outer membrane porin, diphosphate kinase and translation elongation factor beta. Partial short amino acid sequence obtained from some proteins did not allow them to be assigned to a specific protein in the database by BLAST search. In some cases, the tandem mass spectrometry spectra were too complicated to be able to assign an amino acid sequence with certainty. The number of spots (12) giving a clear signal but finding no match in the databases suggests that a majority of proteins associated with a filamentous fungal cell wall, are novel. Some technical problems related to protein isolation are also discussed.

77 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142