scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Journal ArticleDOI
TL;DR: Results of the present study demonstrated the scope and significance of the protoplast fusion technique, which can be used to develop superior hybrid strains of filamentous fungi that lack inherent sexual reproduction.

53 citations

Journal ArticleDOI
TL;DR: Y83 can be exploited for the ensiling lignocellulosic biomass before grass processing and predicted nonstructural carbohydrates kinetics and demonstrated high water soluble carbohydrate preservation potential in Y83.

53 citations

Journal ArticleDOI
TL;DR: The active enzyme was produced in the heterologous host Saccharomyces cerevisiae and characterized and exhibited activity with l‐galactonate and d‐arabonate where the hydroxyl group of the C2 and the C3 is in d‐configuration in the Fischer projection, however, it did not exhibit activity with d‐galactic acid, d‐gluconate, l‐gulonate or d‐xylonate.
Abstract: An L-galactonate dehydratase and the corresponding gene were identified from the mould Hypocrea jecorina (Trichoderma reesei). This novel enzyme converts L-galactonate to L-threo-3-deoxy-hexulosonate (2-keto-3-deoxy-L-galactonate). The enzyme is part of the fungal pathway for D-galacturonic acid catabolism, a pathway which is only partly known. It is the second enzyme of this pathway after the D-galacturonic acid reductase. L-galactonate dehydratase activity is present in H. jecorina cells grown on D-galacturonic acid but absent when other carbon sources are used for growth. A deletion of the L-galactonate dehydratase gene in H. jecorina results in a strain with no growth on D-galacturonic acid. The active enzyme was produced in the heterologous host Saccharomyces cerevisiae and characterized. It exhibited activity with L-galactonate and D-arabonate where the hydroxyl group of the C2 is in L- and the hydroxyl group of the C3 is in D-configuration in the Fischer projection. However, it did not exhibit activity with D-galactonate, D-gluconate, L-gulonate or D-xylonate where the hydroxyl groups of the C2 and C3 are in different configuration.

53 citations

Journal ArticleDOI
TL;DR: It is concluded that knobs are the segregants from the fusants, suggesting the possibility of breeding T. reesei cells by the protoplast fusion technique.
Abstract: Protoplast fusion of strains derived from Trichoderma reesei QM9414 and QM9136 and the segregation of the resulting fusants were studied. Combinations of protoplasts prepared from young conidia with double amino acid requirements, one of which was a common requirement and the other uncommon, were fused in the presence of polyethylene glycol 6000. Fusants were selected as regenerant colonies requiring only the commonly deficient amino acid. The frequency of fusion was 0.9 x 10 to 4.0 x 10 for the starting conidia and 3.0 x 10 to 4.9 x 10 for the regenerated protoplasts, which was significantly higher than the expected reversion frequencies by mutation. Conidia generated on the fusant colonies showed diverse phenotypes, i.e., parental types (40 to 80%) and nonparental types (20 to 60%). Colonies developed from single conidia of the nonparental phenotype contained special spots called "knobs" that have a higher density of mycelia. The phenotype of the knobs was again varied among prototrophs, parental types, and recombinant types; and their traits were inherited stably. The phenotype of the mycelia in the nonknob part was essentially the same as that of the original conidia and again formed knobs in colonies upon transfer of a piece of mycelia to a fresh medium. The conidial DNA content of the knob clone was almost the same as that of the parents, but that of the fusants was 1.2 to 2.0 times higher than that of the parents. From these results, we conclude that knobs are the segregants from the fusants. One knob clone showed twice the carboxymethyl cellulose hydrolyzing activity of the parents, suggesting the possibility of breeding T. reesei cells by the protoplast fusion technique.

53 citations

Book ChapterDOI
TL;DR: The conversion of cellulose using these enzymes was higher than that obtained with logen or Celluclast cellulases using steam-pretreated spruce as substrate, and the hydrolytic capacity of the produced enzyme solutions was higher compared with commercially available enzyme preparations.
Abstract: Various techniques are available for the conversion of lignocellulosics to fuel ethanol. During the last decade processes based on enzymatic hydrolysis of cellulose have been investigated more extensively, showing good yield on both hardwood and softwood. The cellulase production of a filamentous fungi, Trichoderma reesei Rut C 30, was examined on carbon sources obtained after steam pretreatment of spruce. These materials were washed fibrous steam-pretreated spruce (SPS), and hemicellulose hydrolysate. The hemicellulose hydrolysate contained, besides water-soluble carbohydrates, lignin and sugar degradation products, which were formed during the pretreatment and proved to be inhibitory to microorganisms. Experiments were performed in a 4-L laboratory fermentor. The hydrolytic capacity of the produced enzyme solutions was compared with two commercially available enzyme preparations, Celluclast and logen Cellulase, on SPS, washed SPS, and Solka Floc cellulose powder. There was no significant difference among the different enzymes produced by T. reesei Rut C 30. However, the conversion of cellulose using these enzymes was higher than that obtained with logen or Celluclast cellulases using steam-pretreated spruce as substrate.

53 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142