scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Patent
08 May 1991
TL;DR: A cellulose- or hemicellulose-degrading enzyme which is derivable from a fungus other than Trichoderma or Phanero-chaete, and which comprises a carbohydrate binding domain homologous to a terminal A region of T. reesei cellulases is defined in this paper.
Abstract: A cellulose- or hemicellulose-degrading enzyme which is derivable from a fungus other than Trichoderma or Phanero-chaete, and which comprises a carbohydrate binding domain homologous to a terminal A region of Trichoderma reesei cellulases, which carbohydrate binding domain comprises amino acid sequence (.alpha.) or a subsequence thereof capable of effecting binding of the enzyme to an insoluble cellulosic or hemicellulosic substrate.

53 citations

Journal ArticleDOI
TL;DR: The results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.
Abstract: Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 °C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.

53 citations

Journal ArticleDOI
TL;DR: The purified protein was found to be homologous to several trypsin-like fungal serine proteases, with the highest homology to the protease P27 from Trichoderma harzianum.

53 citations

Journal ArticleDOI
TL;DR: The creation of the most stable reported fungal endoglucanase, a derivative of Hypocrea jecorina (anamorph Trichoderma reesei) Cel5A, is described by combining stabilizing mutations identified using consensus design, chimera studies, and structure‐based computational methods.
Abstract: A major obstacle to using widely available and low-cost lignocellulosic feedstocks to produce renewable fuels and chemicals is the high cost and low efficiency of the enzyme mixtures used to hydrolyze cellulose to fermentable sugars. One possible solution entails engineering current cellulases to function efficiently at elevated temperatures in order to boost reaction rates and exploit several other advantages of a higher temperature process. Here we describe the creation of the most stable reported fungal endoglucanase, a derivative of Hypocrea jecorina (anamorph Trichoderma reesei) Cel5A, by combining stabilizing mutations identified using consensus design, chimera studies, and structure-based computational methods. The engineered endoglucanase has an optimal temperature that is 17 °C higher than wild type H. jecorina Cel5A, and hydrolyzes 1.5 times as much cellulose over 60 h at its optimum temperature compared to the wild type enzyme at its optimal temperature.This enzyme complements previously-engineered highly-active, thermostable variants of the fungal cellobiohydrolases Cel6A and Cel7A in a thermostable cellulase mixture that hydrolyzes cellulose synergistically at an optimum temperature of 70 °C over 60 h.The thermostable mixture produces three times as much total sugar as the best mixture of the wild type enzymes operating at its optimum temperature of 60 °C, clearly demonstrating the advantage of higher-temperature cellulose hydrolysis.

53 citations

Journal ArticleDOI
TL;DR: The addition of xylan to the cellulose medium not only induces more hemicellulases but also strongly activates cellulase production, which plays a key role in the induction of highly efficient lignocellulolytic enzymes.
Abstract: Background: Agricultural residue is more efficient than purified cellulose at inducing lignocellulolytic enzyme production in Penicillium oxalicum GZ-2, but in Trichoderma reesei RUT-C30, cellulose induces a more efficient response. To understand the reasons, we designed an artificially simulated plant biomass (cellulose plus xylan) to study the roles and relationships of each component in the production of lignocellulolytic enzymes by P. oxalicum GZ-2. Results: The changes in lignocellulolytic enzyme activity, gene expression involving (hemi)cellulolytic enzymes, and the secretome of cultures grown on Avicel (A), xylan (X), or a mixture of both (AX) were studied. The addition of xylan to the cellulose culture did not affect fungal growth but significantly increased the activity of cellulase and hemicellulase. In the AX treatment, the transcripts of cellulase genes (egl1, egl2, egl3, sow ,a ndcbh2) and hemicellulase genes (xyl3 and xyl4) were significantly upregulated (P <0.05). The proportion of biomass-degrading proteins in the secretome was altered; in particular, the percentage of cellulases and hemicellulases was increased. The percentage of cellulases and hemicellulases in the AX secretome increased from 4.5% and 7.6% to 10.3% and 21.8%, respectively, compared to the secretome of the A treatment. Cellobiohydrolase II (encoded by cbh2 )a nd xylanase II (encoded by xyl2) were the main proteins in the secretome, and their corresponding genes (cbh2 and xyl2) were transcripted at the highest levels among the cellulolytic and xylanolytic genes. Several important proteins such as swollenin, cellobiohydrolase, and endo-beta-1,4-xylanase were only induced by AX. Bray-Curtis similarity indices, a dendrogram analysis, and a diversity index all demonstrated that the secretome produced by P. oxalicum GZ-2 depended on the substrate and that strain GZ-2 directionally adjusted the compositions of lignocellulolytic enzymes in its secretome to preferably degrade a complex substrate. Conclusion: The addition of xylan to the cellulose medium not only induces more hemicellulases but also strongly activates cellulase production. The proportion of the biomass-degrading proteins in the secretome was altered significantly, with the proportion of cellulases and hemicellulases especially increased. Xylan and cellulose have positively synergistic effects, and they play a key role in the induction of highly efficient lignocellulolytic enzymes.

53 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142