scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Journal ArticleDOI
22 Jul 1994-Science
TL;DR: The structure of the major cellobiohydrolase, CBHI, of the potent cellulolytic fungus Trichoderma reesei has been determined and refined and may account for many of the previously poorly understood macroscopic properties of the enzyme and its interaction with solid cellulose.
Abstract: Cellulose is the major polysaccharide of plants where it plays a predominantly structural role. A variety of highly specialized microorganisms have evolved to produce enzymes that either synergistically or in complexes can carry out the complete hydrolysis of cellulose. The structure of the major cellobiohydrolase, CBHI, of the potent cellulolytic fungus Trichoderma reesei has been determined and refined to 1.8 angstrom resolution. The molecule contains a 40 angstrom long active site tunnel that may account for many of the previously poorly understood macroscopic properties of the enzyme and its interaction with solid cellulose. The active site residues were identified by solving the structure of the enzyme complexed with an oligosaccharide, o-iodobenzyl-1-thio-beta-cellobioside. The three-dimensional structure is very similar to a family of bacterial beta-glucanases with the main-chain topology of the plant legume lectins.

639 citations

Journal ArticleDOI
TL;DR: This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.
Abstract: Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

636 citations

Journal ArticleDOI
27 Jul 1990-Science
TL;DR: The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase.
Abstract: The enzymatic degradation of cellulose is an important process, both ecologically and commercially. The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase. The active site of CBHII is located at the carboxyl-terminal end of a parallel beta barrel, in an enclosed tunnel through which the cellulose threads. Two aspartic acid residues, located in the center of the tunnel are the probable catalytic residues.

605 citations

Journal ArticleDOI
TL;DR: The specific activities of the intact enzymes and their cores on two forms of insoluble cellulose (crystalline, amorphous) differentiate the CBH I and CBH II in terms of adsorption and catalytic properties.
Abstract: Limited action of papain on the native forms of two cellobiohydrolases (CBH) from Trichoderma reesei (CBH I, 65 kDa, and CBH II, 58 kDa) leads to the isolation of the respective core fragments (56 kDa and 45 kDa) which are fully active on small, soluble substrates, but have a strongly reduced activity (respectively 10% and 50% of the initial value) on microcrystalline cellulose (Avicel). By partial sequencing at the C terminus of the CBH I core and at the N terminus of the CBH II core the papain cleavage sites have been assigned in the primary structures (at about residue 431 and 82 respectively). This limited action of papain on the native enzymes indicates the presence of hinge regions linking the core to these terminal glycopeptides. The latter conserved sequences appear either at the C or N terminus of several cellulolytic enzymes from Trichoderma reesei [Teeri et al. (1987) Gene 51, 43-52]. The specific activities of the intact enzymes and their cores on two forms of insoluble cellulose (crystalline, amorphous) differentiate the CBH I and CBH II in terms of adsorption and catalytic properties. Distinct functions can be attributed to the terminal peptides: for intact CBH II the N-terminal region contributes in the binding onto both cellulose types; the homologous C-terminal peptide in CBH I, however, only affects the interaction with microcrystalline cellulose. It could be inferred that CBH I and its core bind preferentially to crystalline regions. This seems to be corroborated by the results of CBH I/CBH II synergism experiments.

600 citations

Journal ArticleDOI
TL;DR: A better understanding of mycoparasitism is offered, and the development of improved biocontrol strains for efficient and environmentally friendly protection of plants is enforced.
Abstract: Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.

599 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142