scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Journal ArticleDOI
TL;DR: This review introduces to the scientific community the development of modern tools for Trichoderma species identification: the oligonucleotide barcode program TrichOKEY version 1.0, and TrichoBLAST, the multilocus database of vouchered sequences powered by a similarity search tool, which make it possible to identify all known Trichodma species based on sequence analysis.

176 citations

Journal ArticleDOI
TL;DR: An intracellular β-glucosidase enzyme BGLII and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei are described, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene.
Abstract: This paper describes the characterization of an intracellular beta-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific beta-glucosidase, having no beta-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this beta-glucosidase.

176 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that xylans clearly inhibited the enzymatic hydrolysis of wheat straw, Avicel, and nanocellulose by cellulases.

175 citations

Journal ArticleDOI
TL;DR: The molecular basis of the absence of xylanase I formation on glucose was studied to postulate that basal transcription of xyn1 is repressed by glucose and mediated by an inverted repeat of the consensus motif for Cre1‐mediated carbon catabolite repression.
Abstract: The filamentous fungus Trichoderma reesei forms two specific, xylan-inducible xylanases encoded by xyn1 and xyn2 to degrade the beta-1,4-D-xylan backbone of hemicelluloses. This enzyme system is formed in the presence of xylan, but not glucose. The molecular basis of the absence of xylanase I formation on glucose was the purpose of this study. Northern blotting of the xyn1 transcript as well as the use of the Escherichia coli hygromycin B phosphotransferase-encoding gene (hph) as a reporter consistently showed that the basal expression of xyn1 was affected by glucose, whereas its induction by xylan remained uninfluenced. The repression of basal xyn1 transcription is mediated by the carbon catabolite repressor protein Cre1, which in vivo binds to two of four consensus sites (5'-SYG-GRG-3') in the xyn1 promoter, which occurred in the form of an inverted repeat. T. reesei strains, bearing a xyn1::hph reporter construct, in which four nucleotides from the middle of the inverted repeat had been removed, expressed hph on glucose at a level comparable to that observed during growth on a carbon catabolite derepressing carbon source. Northern analysis of xyn1 expression in a T. reesei mutant strain (RUT C-30), which contains a truncated, non-functional cre1 gene, also confirmed basal transcription of xyn1. In this strain, xyn1 transcription was still inducible by xylose or xylan to an even higher degree than in the wild-type strain, suggesting that induction overcomes glucose repression at the level of xyn1 expression. Based on these data, we postulate that basal transcription of xyn1 is repressed by glucose and mediated by an inverted repeat of the consensus motif for Cre1-mediated carbon catabolite repression.

174 citations

Journal ArticleDOI
TL;DR: In this paper, Aspergillus terreus, Cellulomonas uda, Trichoderma reesei and Zymomonas mobilis were tested for their pretreatment effects on sugarcane trash.
Abstract: Pretreatment of lignocellulosic biomasses, the first step in their conversion to utilizable molecules requires very high energy (steam and electricity), corrosion resistant high-pressure reactors and high temperatures. These severe conditions not only add to the cost component of the entire process but also lead to the loss of sugars to the side reactions. Microbial pretreatments have been reported to be associated with reducing the cost factors as well as the severities of the reactions. Eight bioagents, including fungi and bacteria, were screened for their pretreatment effects on sugarcane trash. They narrowed down the C:N ratio of trash from 108:1 to a varying range of approximately 42:1 to 60:1.The maximum drop in C:N ratio of 61% was observed using Aspergillus terreus followed by Cellulomonas uda (52%) and Trichoderma reesei and Zymomonas mobilis (49%). The bioagents helped in degradation of sugarcane trash by production of cellulases, the maximum being produced by A. terreus, (12 fold) followed by C. uda (10 fold), Cellulomonas cartae (9 fold) and Bacillus macerans (8 fold). The microbial pretreatment of trash rendered the easy accessibility of sugars for enzymatic hydrolysis, which can be directed for production of alcohol.

173 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142