scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Journal ArticleDOI
TL;DR: Two mediators, N‐hydroxy‐N‐phenylacetamide and its acetylated precursor, were oxidized by the laccase from Trametes hirsuta, and their effects on the activity of cellulolytic enzymes and on the hydrolysis yield of SPS were examined.
Abstract: The impact of oxidative modification and partial removal of lignin by laccase-mediator treatments on the enzymatic hydrolysis of steam-pretreated softwood (SPS) was evaluated. Two mediators, N-hydroxy-N-phenylacetamide (NHA) and its acetylated precursor, were oxidized by the laccase from Trametes hirsuta, and their effects on the activity of cellulolytic enzymes and on the hydrolysis yield of SPS were examined. Both simultaneous and sequential combinations of laccase-mediator treatments with commercial cellulases increased the sugar yield in the enzymatic hydrolysis of SPS. The maximal increase was 21% when a sequential treatment was applied. Laccase treatment alone was also shown to improve hydrolysis. NHA oxidized by laccase inhibited significantly the cellulases of Trichoderma reesei, but the presence of the solid substrate protected the activities against oxidative inactivation. Surface analysis of the lignocellulosic substrate before and after the laccase and cellulase treatments revealed an enrichment of lignin and an increase of carboxylic groups on the surface of the hydrolysis residue.

139 citations

Journal ArticleDOI
TL;DR: A transformation system that allows highly efficient gene targeting by using a tmus53 (human LIG4 homolog) deletion strain and permits the unlimited reuse of the same marker by employing a Cre/loxP-based excision system is reported.
Abstract: Hypocrea jecorina is an industrially important filamentous fungus due to its effective production of hydrolytic enzymes. It has received increasing interest because of its ability to convert lignocellulosic biomass to monomeric sugars, which can be converted into biofuels or platform chemicals. Genetic engineering of strains is a highly important means of meeting the requirements of tailor-made applications. Therefore, we report the development of a transformation system that allows highly efficient gene targeting by using a tmus53 (human LIG4 homolog) deletion strain. Moreover, it permits the unlimited reuse of the same marker by employing a Cre/loxP-based excision system. Both marker insertion and marker excision can be positively selected for by combining resistance to hygromycin B and loss of sensitivity to fluoroacetamide. Finally, the marker pyr4, also positively selectable for insertion and loss, can be used to remove the cre gene.

139 citations

Journal ArticleDOI
TL;DR: Site-directed mutagenesis, X-ray crystallography, and enzyme kinetic studies have been used to confirm the role of residue D221 as the catalytic acid in Cel6A, and suggest that the single-displacement mechanism of Cel 6A may not directly involve a catalytic base.
Abstract: Trichoderma reesei cellobiohydrolase Cel6A is an inverting glycosidase. Structural studies have established that the tunnel-shaped active site of Cel6A contains two aspartic acids, D221 and D175, that are close to the glycosidic oxygen of the scissile bond and at hydrogen-bonding distance from each other. Here, site-directed mutagenesis, X-ray crystallography, and enzyme kinetic studies have been used to confirm the role of residue D221 as the catalytic acid. D175 is shown to affect protonation of D221 and to contribute to the electrostatic stabilization of the partial positive charge in the transition state. Structural and modeling studies suggest that the single-displacement mechanism of Cel6A may not directly involve a catalytic base. The value of (D2O)(V) of 1.16 +/- 0.14 for hydrolysis of cellotriose suggests that the large direct effect expected for proton transfer from the nucleophilic water through a water chain (Grotthus mechanism) is offset by an inverse effect arising from reversibly breaking the short, tight hydrogen bond between D221 and D175 before catalysis.

138 citations

Journal ArticleDOI
TL;DR: Mixed culturing is beneficial for the economic production of cellulases on nutritionally poor agricultural residues, without the need for supplementation with expensive organic supplements.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the growth improvement of chicks fed enzyme-supplemented barley diets could not be due to improved glucose availability from β-D-glucan.

137 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142