scispace - formally typeset
Search or ask a question
Topic

Trichoderma reesei

About: Trichoderma reesei is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 152877 citations. The topic is also known as: Trichoderma reesi.


Papers
More filters
Journal ArticleDOI
TL;DR: This study characterized genomic alterations in high-producing mutants of T. reesei by high-resolution array comparative genomic hybridization to obtain genome-wide information which could be utilized for better understanding of the mechanisms underlying efficient cellulase production, and would enable targeted genetic engineering for improved production of proteins in general.
Abstract: Background: Trichoderma reesei is the main industrial producer of cellulases and hemicellulases that are used to depolymerize biomass in a variety of biotechnical applications. Many of the production strains currently in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in high-producing mutants of T. reesei by high-resolution array comparative genomic hybridization (aCGH). Our aim was to obtain genome-wide information which could be utilized for better understanding of the mechanisms underlying efficient cellulase production, and would enable targeted genetic engineering for improved production of proteins in general. Results: We carried out an aCGH analysis of four high-producing strains (QM9123, QM9414, NG14 and Rut-C30) using the natural isolate QM6a as a reference. In QM9123 and QM9414 we detected a total of 44 previously undocumented mutation sites including deletions, chromosomal translocation breakpoints and single nucleotide mutations. In NG14 and Rut-C30 we detected 126 mutations of which 17 were new mutations not documented previously. Among these new mutations are the first chromosomal translocation breakpoints identified in NG14 and Rut-C30. We studied the effects of two deletions identified in Rut-C30 (a deletion of 85 kb in the scaffold 15 and a deletion in a gene encoding a transcription factor) on cellulase production by constructing knock-out strains in the QM6a background. Neither the 85 kb deletion nor the deletion of the transcription factor affected cellulase production. Conclusions: aCGH analysis identified dozens of mutations in each strain analyzed. The resolution was at the level of single nucleotide mutation. High-density aCGH is a powerful tool for genome-wide analysis of organisms with small genomes e.g. fungi, especially in studies where a large set of interesting strains is analyzed.

95 citations

Journal ArticleDOI
TL;DR: In this article, an eco-friendly pretreatment strategy using the 1-ethyl-3methylimidazolium acetate [Emim][OAc] IL at 45°C was presented.

95 citations

Journal ArticleDOI
TL;DR: This is the first attempt of combining the synthetic substrate (xylose, lactose) with natural substrate (sugarcane bagasse, rice straw) and the mixture of substrates produced the highest maximal enzyme activity on cellulose with xylose.
Abstract: Cellulase a multienzyme made up of several proteins finds extensive applications in food, fermentation and textile industries. Trichoderma reesei is an efficient producer of cellulase protein. The comparative study was made on various carbon sources on the production of cellulase using strains of T. reesei QM 9414, 97.177 and Tm3. Pretreatment of sugarcane bagasse and rice straw offers very digestible cellulose and potentially less inhibition. Cellulase production was enhanced by multiple carbon sources because of diauxic pattern of utilization of substrates. This is the first attempt of combining the synthetic substrate (xylose, lactose) with natural substrate (sugarcane bagasse, rice straw). The mixture of substrates produced the highest maximal enzyme activity on cellulose with xylose, cellulose with lactose, bagasse with xylose, bagasse with lactose, rice straw with xylose and rice straw with lactose. In addition Monod growth kinetics and Leudeking piret product formation kinetics were studied using T. reesei with optimized medium under optimized conditions of inoculum concentration, D.O. level, agitator speed, temperature and pH.

95 citations

Journal ArticleDOI
TL;DR: The total amount of Aspergillus nidulans secreted cellulases is affected by both the carbon and nitrogen source present in the medium, and is regulated directly and/or indirectly by the carbon metabolism regulators, CreA, CreB, and CreC, and the global nitrogen metabolism regulator, AreA.

95 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
87% related
Yeast
31.7K papers, 868.9K citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
84% related
Escherichia coli
59K papers, 2M citations
83% related
Lignin
18.3K papers, 659.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022177
2021134
2020141
2019138
2018142