scispace - formally typeset
Search or ask a question
Topic

Trickling filter

About: Trickling filter is a research topic. Over the lifetime, 1098 publications have been published within this topic receiving 20219 citations.


Papers
More filters
Journal Article
TL;DR: Agarwal et al. as discussed by the authors used simulated environments to evaluate whether a wastewater treatment process is anaerobic or anaerobically stable. But, the results showed that the anaerodynamic process is more stable than the aerobic process.
Abstract: Biological wastewater treatment facilities are designed to emulate the purification process that occurs naturally in rivers, lakes and streams. In the simulated environment, conditions are carefully manipulated to spur the degradation of organic contaminants and stabilize the residual sludge. Whether the treatment process is aerobic or anaerobic is determined by a number of factors, including the composition of the wastewater, the degree of stabilization required for environmental compliance and economic viability. Because anaerobic digestion is accomplished without oxygen in a closed system, it is economical for pretreatment of high-strength organic sludge. Before the effluent can be discharged, however, followup treatment using an aerobic process is required. Though it has the drawback of being energy intensive, aerobic processing, the aeration of organic sludges in an open tank, is the primary method for treatment of industrial and municipal wastewater. Aerobic processes are more stable than anaerobic approaches and can be done rather simply, particularly with trickling filters. Gradually, the commercialization of modular systems that are capable of aerobic and anaerobic digestion will blur the distinctions between the two processes. Systems that boast those capabilities are available now.

14 citations

Journal ArticleDOI
TL;DR: In this article, a long-term experimental program was conducted using a TF/SC pilot plant constructed at the Marrero, La., wastewater treatment plant, and the experimental data confirmed that flocculation of the particulate COD contained in the trickling filter effluent explains the high total COD removal observed at the SCC.
Abstract: The trickling filter/solids contact ~TF/SC! process was developed in the late 1970s to improve the quality of the final effluent from existing trickling filter plants, to be able to meet stricter Environmental Protection Agency effluent requirements. Although this process has successfully achieved this objective, it is still not completely understood, there is limited information regarding the floccu- lation phenomena occurring in the solids contact chamber ~SCC!, and no information could be found on the relationship between flocculation and organic matter removal kinetics. To better understand the kinetics of biological flocculation in a continuous flow SCC, a long-term experimental program was conducted using a TF/SC pilot plant constructed at the Marrero, La., wastewater treatment plant. This program started in January 1998 and has continued through date. The present article will focus on two major areas: ~1! the kinetics of bioflocculation in the SCC; and ~2! effect of bioflocculation on chemical oxygen demand ~COD! removal. Analysis of the wastewater composition revealed that, on the average, only 18.7% of the total COD in the SCC influent is truly dissolved. Therefore, most of the total COD removal observed in the SCC must be due to a physical process, such as flocculation. The experimental data confirmed that flocculation of the particulate COD contained in the trickling filter effluent explains the high total COD removal observed at the SCC. Both total and colloidal COD removals are well explained by the first-order flocculation model.

14 citations

Patent
23 Mar 2005
TL;DR: In this article, a filter system with a deep bed filter of microbeads is described, where mixing devices, such as mechanical stirrers, axial flow pumps, air lift pumps or helical screws, are integrated to enhance the mixing of the bed and to prevent clogging.
Abstract: A filter system with a deep bed filter of microbeads is provided. The filter system may include a mixed bed trickling filter that utilizes microbeads as a high specific surface area media for biofiltration, capture of fine particulate solids, as well as degassing and oxygenating. Mixing devices, such as mechanical stirrers, axial flow pumps, airlift pumps or helical screws, may be integrated to enhance the mixing of the bed and to prevent clogging. Degassing or oxygenating process may be integrated within the microbead filter to introduce or withdraw gases in the bed. In a particular embodiment, the filter system includes serial distribution plates, which support multi-layered beds that create separate chambers in a filter vessel. Degassing or oxygenation process may be integrated within each microbead filter chamber.

14 citations

Journal ArticleDOI
TL;DR: There may be the potential to optimise existing, conventional treatment processes (primary or biological treatment) to enhance dissolved copper removal, possibly reducing the requirement for installing any tertiary processes specifically for the removal of copper.

14 citations


Network Information
Related Topics (5)
Sewage treatment
47.8K papers, 677.2K citations
86% related
Denitrification
23.7K papers, 663.3K citations
84% related
Wastewater
92.5K papers, 1.2M citations
83% related
Water quality
67.1K papers, 945.1K citations
79% related
Freundlich equation
27.6K papers, 941.4K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202229
202133
202034
201932
201826