scispace - formally typeset
Search or ask a question
Topic

Trickling filter

About: Trickling filter is a research topic. Over the lifetime, 1098 publications have been published within this topic receiving 20219 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The δ13C and δ15N of organic matter in the mariculture system indicated that fish fed solely on feed pellets, and this latter finding points to an intensive microbial degradation of the organic matter taking place in the anaerobic treatment step of the system.

11 citations

Book ChapterDOI
01 Jan 2018
TL;DR: In this paper, a series of waste stabilization ponds (anaerobic, facultative and maturation) in which the detritus food chain was dominant over the grazing food chain is popular.
Abstract: Wastewater generated from different sources creates environmental problems after entering the aquatic ecosystem due to its heavy organic load and other undesirable toxicants. As a consequence, biological and chemical oxygen demand increases with depletion of oxygen level of water; all the biotic organisms suffer from stress-related symptoms often reaching to lethal limits. However, wastewater may become a useful resource for various economic-driven activities. Wastewater reuse is primarily dependent on the microbial degradation of different nutrients present in sewage. Thus, biogeochemical cycling bacteria have profound role on the decomposition, degradation and regeneration of nutrients from organic sewage water. Thus, the metabolism and turnover of the whole sewage-fed ponds are regulated by nutrient cycling and energy flow in the trophic level. Waste stabilization pond has been recognized as effective treatment system with removal of as high as 90–95% dissolved organic matter and reducing pathogens through microbial activities under aerobic and anaerobic conditions in trickling filter, activated sludge processes, etc. Interactions within and between carbon, nitrogen and phosphorus pools in nutrient cycles of wastewater-fed ponds ultimately result in nutrient removal from wastewater. A series of waste stabilization ponds (anaerobic, facultative and maturation) in which the detritus food chain is dominant over the grazing food chain is popular. It is evident that microbial activities play a crucial role in nutrient recovery from wastewater through microbial degradation of organic load leading to increased biological production while accelerating the enhancement of water quality through microbial-driven ecological processes.

11 citations

Journal ArticleDOI
TL;DR: In this paper , a bio-trickling filter (BTF) inoculated with microorganisms acclimated to activated sludge in a WWTP was used as the degradation equipment.

11 citations

01 Jan 2005
TL;DR: In this article, the authors investigated a biological process for the removal of nitrogenous compounds from real metal-processing wastewater using an aerobic continuously stirred tank reactor (CSTR) followed by an anaerobic packed column and was run using real wastewater from a metal processing operation.
Abstract: Although several nitrification/denitrification processes are established for the removal of ammonia and nitrate from municipal and industrial wastewaters, there are few reported results on the removal of these ions from metal-processing and finishing wastewaters. Unlike municipal wastewater, there is very little organic content in metal-processing wastewaters. Sources of ammonia and nitrate in the wastewater include the use of ammonium-nitrate-fuel oil as a blasting agent, and the use of other nitrogen-containing reagents during processing. The objective of this work was to investigate a biological process for the removal of nitrogenous compounds from real metal-processing wastewater. The system comprised an aerobic continuously stirred tank reactor (CSTR) followed by an anaerobic packed column and was run using real wastewater from a metal-processing operation. The system was inoculated using humus sludge from a municipal trickling filter and a period of approximately four weeks was required for a denitrifying biofilm to develop. Results showed that ammonia removal occurred readily in the CSTR while nitrite oxidation was slower to develop. The CSTR was found to be suitable for ammonia oxidation; up to 89% ammonia removal was achieved. By employing an integrated process comprising nitrification and denitrification, high ammonia removal efficiencies can be obtained. An effluent that is low in ammonia can be obtained with this system with additional carbon introduced after the CSTR. The gravel-packed column reactor was found to be unsuitable for the removal of nitrate in the configuration used (maximum 15% removal efficiency). The critical parameters for denitrification are nitrate concentration, temperature, influent flow rate and mean cell retention time. Nitrate removal did not meet the expectations projected by previous authors’ work using synthetic wastewater.

11 citations

01 Jan 2008
TL;DR: In this article, the effect of the organic carbon (electron donor) concentration was examined for constant hexavalent chromium (Cr(VI) influent concentration at about 5.5mg L −1 and volumetric flow rates ranging from 60 to 900mL min −1.
Abstract: BACKGROUND: Hexavalent chromium (Cr(VI)) is toxic to humans, animals and plants. Conventional treatment technologies reduce Cr(VI) to the less toxic and mobile Cr(III), but these methods are usually expensive and generate secondary waste. Microbial Cr(VI) reduction has recently gained attention as a detoxification process, since it enables Cr(VI) reduction through relatively cheap and simple methods. The aim of this work was to investigate the mechanism and the performance of biological Cr(VI) reduction using mixed cultures originated from industrial sludge under continuous operation with recirculation in a pilot-scale trickling filter. RESULTS: Biological Cr(VI) reduction was studied using a pilot-scale trickling filter filled with plastic media under continuous operation with recirculation and the use of indigenous bacterial population. The effect of the organic carbon (electron donor) concentration was examined for constant Cr(VI) influent concentration at about 5.5mg L −1 and volumetric flow rates ranging from 60 to 900mL min −1 . The highest reduction rate achieved was 1117g Cr(VI) m −2 d −1 for a volumetric flow rate of 900mL min −1 . The system’s reduction capacity was significantly affected by chromate loadings, resulting in frequent backwashing of the filter. The determination of the reduction mechanism was also studied using batch cultures of free suspended cells and culture supernatant. CONCLUSION: The high reduction rates combined with the low operating cost indicate that the above technology can be a viable solution for the treatment of industrial chromate effluents.  2008 Society of Chemical Industry

11 citations


Network Information
Related Topics (5)
Sewage treatment
47.8K papers, 677.2K citations
86% related
Denitrification
23.7K papers, 663.3K citations
84% related
Wastewater
92.5K papers, 1.2M citations
83% related
Water quality
67.1K papers, 945.1K citations
79% related
Freundlich equation
27.6K papers, 941.4K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202229
202133
202034
201932
201826