scispace - formally typeset
Search or ask a question
Topic

Trigonometric functions

About: Trigonometric functions is a research topic. Over the lifetime, 4096 publications have been published within this topic receiving 58872 citations. The topic is also known as: circular function & angle function.


Papers
More filters
Journal ArticleDOI
TL;DR: Adapted waveform analysis uses a library of orthonormal bases and an efficiency functional to match a basis to a given signal or family of signals, and relies heavily on the remarkable orthogonality properties of the new libraries.
Abstract: Adapted waveform analysis uses a library of orthonormal bases and an efficiency functional to match a basis to a given signal or family of signals. It permits efficient compression of a variety of signals, such as sound and images. The predefined libraries of modulated waveforms include orthogonal wavelet-packets and localized trigonometric functions, and have reasonably well-controlled time-frequency localization properties. The idea is to build out of the library functions an orthonormal basis relative to which the given signal or collection of signals has the lowest information cost. The method relies heavily on the remarkable orthogonality properties of the new libraries: all expansions in a given library conserve energy and are thus comparable. Several cost functionals are useful; one of the most attractive is Shannon entropy, which has a geometric interpretation in this context. >

3,307 citations

Journal ArticleDOI
TL;DR: The (G'/G)-expansion method is firstly proposed in this paper, where G = G(xi) satisfies a second order linear ordinary differential equation (LODE for short), by which the travelling wave solutions involving parameters of the KdV equation, the mKdV equations, the variant Boussinesq equations and the Hirota-Satsuma equations are obtained when the parameters are taken as special values.

1,673 citations

Journal ArticleDOI
TL;DR: In this article, the difference between the two subspaces is characterized in terms of certain angles through which one subspace must be rotated in order most directly to reach the other, and Sharp bounds upon trigonometric functions of these angles are obtained from the gap and from bounds upon either the perturbation or a computable residual.
Abstract: When a Hermitian linear operator is slightly perturbed, by how much can its invariant subspaces change? Given some approximations to a cluster of neighboring eigenvalues and to the corresponding eigenvectors of a real symmetric matrix, and given an estimate for the gap that separates the cluster from all other eigenvalues, how much can the subspace spanned by the eigenvectors differ from the subspace spanned by our approximations? These questions are closely related; both are investigated here. The difference between the two subspaces is characterized in terms of certain angles through which one subspace must be rotated in order most directly to reach the other. These angles unify the treatment of natural geometric, operator-theoretic and error-analytic questions concerning those subspaces. Sharp bounds upon trigonometric functions of these angles are obtained from the gap and from bounds upon either the perturbation (1st question) or a computable residual (2nd question). An example is included.

1,263 citations

Book
01 Jan 1993
TL;DR: The principles of the algorithms available for performing arithmetic operations in digital computers, described independently of specific implementation technology and within the same framework, are explained.
Abstract: This text explains the fundamental principles of algorithms available for performing arithmetic operations on digital computers. These include basic arithmetic operations like addition, subtraction, multiplication, and division in fixed-point and floating-point number systems as well as more complex operations such as square root extraction and evaluation of exponential, logarithmic, and trigonometric functions. The algorithms described are independent of the particular technology employed for their implementation.

1,174 citations

Book
06 Feb 1992
TL;DR: In this article, the authors present a review of the application of different types of functions and their application in the context of counting, including the following: 1. Derivative of a function.
Abstract: (NOTE: Every chapter ends with Questions to Guide Your Review, Practice Exercises, and Additional Exercises.) P. Preliminaries. Real Numbers and the Real Line. Coordinates, Lines, and Increments. Functions. Shifting Graphs. Trigonometric Functions. 1. Limits and Continuity. Rates of Change and Limits. Rules for Finding Limits. Target Values and Formal Definitions of Limits. Extensions of the Limit Concept. Continuity. Tangent Lines. 2. Derivatives. The Derivative of a Function. Differentiation Rules. Rates of Change. Derivatives of Trigonometric Functions. The Chain Rule. Implicit Differentiation and Rational Exponents. Related Rates of Change. 3. Applications of Derivatives. Extreme Values of Functions. The Mean Value Theorem. The First Derivative Test for Local Extreme Values. Graphing with y e and y . Limits as x a a, Asymptotes, and Dominant Terms. Optimization. Linearization and Differentials. Newton's Method. 4. Integration. Indefinite Integrals. Differential Equations, Initial Value Problems, and Mathematical Modeling. Integration by Substitution--Running the Chain Rule Backward. Estimating with Finite Sums. Riemann Sums and Definite Integrals. Properties, Area, and the Mean Value Theorem. Substitution in Definite Integrals. Numerical Integration. 5. Applications of Integrals. Areas Between Curves. Finding Volumes by Slicing. Volumes of Solids of Revolution--Disks and Washers. Cylindrical Shells. Lengths of Plan Curves. Areas of Surfaces of Revolution. Moments and Centers of Mass. Work. Fluid Pressures and Forces. The Basic Pattern and Other Modeling Applications. 6. Transcendental Functions. Inverse Functions and Their Derivatives. Natural Logarithms. The Exponential Function. ax and logax. Growth and Decay. L'Hopital's Rule. Relative Rates of Growth. Inverse Trigonomic Functions. Derivatives of Inverse Trigonometric Functions Integrals. Hyperbolic Functions. First Order Differential Equations. Euler's Numerical Method Slope Fields. 7. Techniques of Integration. Basic Integration Formulas. Integration by Parts. Partial Fractions. Trigonometric Substitutions. Integral Tables and CAS. Improper Integrals. 8. Infinite Series. Limits of Sequences of Numbers. Theorems for Calculating Limits of Sequences. Infinite Series. The Integral Test for Series of Nonnegative Terms. Comparison Tests for Series of Nonnegative Terms. The Ratio and Root Tests for Series of Nonnegative Terms. Alternating Series, Absolute and Conditional Convergence. Power Series. Taylor and Maclaurin Series. Convergence of Taylor Series Error Estimates. Applications of Power Series. 9. Conic Sections, Parametrized Curves, and Polar Coordinates. Conic Sections and Quadratic Equations. Classifying Conic Sections by Eccentricity. Quadratic Equations and Rotations. Parametrizations of Plan Curves. Calculus with Parametrized Curves. Polar Coordinates. Graphing in Polar Coordinates. Polar Equations for Conic Sections. Integration in Polar Coordinates. 10. Vectors and Analytic Geometry in Space. Vectors in the Plane. Cartesian (Rectangular) Coordinates and Vectors in Space. Dot Products. Cross Products. Lines and Planes in Space. Cylinders and Quadric Surfaces. Cylindrical and Spherical Coordinates. 11. Vector-Valued Functions and Motion in Space. Vector-Valued Functions and Space Curves. Modeling Projectile Motion. Arc Length and the Unit Tangent Vector T. Curvature, Torison, and the TNB Frame. Planetary Motion and Satellites. 12. Multivariable Functions and Partial Derivatives. Functions of Several Variables. Limits and Continuity. Partial Derivatives. Differentiability, Linearization, and Differentials. The Chain Rule. Partial Derivatives with Constrained Variables. Directional Derivatives, Gradient Vectors, and Tangent Planes. Extreme Values and Saddle Points. Lagrange Multipliers. Taylor's Formula. 13. Multiple Integrals. Double Integrals. Areas, Moments, and Centers of Mass. Double Integrals in Polar Form. Triple Integrals in Rectangular Coordinates. Masses and Moments in Three Dimensions. Triple Integrals in Cylindrical and Spherical Coordinates. Substitutions in Multiple Integrals. 14. Integration in Vector Fields. Line Integrals. Vector Fields, Work, Circulation, and Flux. Path Independence, Potential Functions, and Conservative Fields. Green's Theorem in the Plane. Surface Area and Surface Integrals. Parametrized Surfaces. Stokes's Theorem. The Divergence Theorem and a Unified Theory. Appendices. Mathematical Induction. Proofs of Limit Theorems in Section 1.2. Complex Numbers. Simpson's One-Third Rule. Cauchy's Mean Value Theorem and the Stronger Form of L'Hopital's Rule. Limits that Arise Frequently. The Distributive Law for Vector Cross Products. Determinants and Cramer's Rule. Euler's Theorem and the Increment Theorem.

662 citations


Network Information
Related Topics (5)
Differential equation
88K papers, 2M citations
88% related
Nonlinear system
208.1K papers, 4M citations
87% related
Matrix (mathematics)
105.5K papers, 1.9M citations
86% related
Boundary value problem
145.3K papers, 2.7M citations
86% related
Wavelet
78K papers, 1.3M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023300
2022688
2021221
2020216
2019211
2018196