scispace - formally typeset
Search or ask a question
Topic

Triplet state

About: Triplet state is a research topic. Over the lifetime, 13570 publications have been published within this topic receiving 338717 citations. The topic is also known as: spin triplet & triplet (state).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a set of 28 medium-sized organic molecules is assembled that cover the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases.
Abstract: A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP26-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.

860 citations

Journal ArticleDOI
TL;DR: In this paper, a compilation of spectral parameters associated with triplet-triplet absorption of organic molecules in condensed media is presented, including wavelengths of maximum absorbance and corresponding extinction coefficients.
Abstract: We present a compilation of spectral parameters associated with triplet–triplet absorption of organic molecules in condensed media. The wavelengths of maximum absorbance and the corresponding extinction coefficients, where known, have been critically evaluated. Other data, for example, lifetimes, energies and energy transfer rates, relevant to the triplet states of these molecules are included by way of comments but have not been subjected to a similar scrutiny. Work in the gas phase has been omitted, as have theoretical studies. We provide an introduction to triplet state processes in solution and solids, developing the conceptual background and offering an historical perspective on the detection and measurement of triplet state absorption. Techniques employed to populate the triplet state are reviewed and the various approaches to the estimation of the extinction coefficient of triplet–triplet absorption are critically discussed. A statistical analysis of the available data is presented and recommendations for a hierarchical choice of extinction coefficients are made. Data collection is expected to be complete through the end of 1984. Compound name, molecular formula and author indexes are appended.

794 citations

Journal ArticleDOI
01 Feb 1999-Nature
TL;DR: The results imply that the exciton binding energy is weak, or that singlet bound states are formed with higher probability than triplets, in polymer light-emitting diodes, attained by blending electron transport materials with the conjugated polymer to improve the injection of electrons.
Abstract: Some conjugated polymers have luminescence properties that are potentially useful for applications such as light-emitting diodes, whose performance is ultimately limited by the maximum quantum efficiency theoretically attainable for electroluminescence1, 2,. If the lowest-energy excited states are strongly bound excitons (electron–hole pairs in singlet or triplet spin states), this theoretical upper limit is only 25% of the corresponding quantum efficiency for photoluminescence: an electron in the π*-band and a hole (or missing electron) in the π-band can form a triplet with spin multiplicity of three, or a singlet with spin multiplicity of one, but only the singlet will decay radiatively3. But if the electron–hole binding energy is sufficiently weak, the ratio of the maximum quantum efficiencies for electroluminescence and photoluminescence can theoretically approach unity. Here we report a value of ∼50% for the ratio of these efficiencies (electroluminescence:photoluminescence) in polymer light-emitting diodes, attained by blending electron transport materials with the conjugated polymer to improve the injection of electrons. This value significantly exceeds the theoretical limit for strongly bound singlet and triplet excitons, assuming they comprise the lowest-energy excited states. Our results imply that the exciton binding energy is weak, or that singlet bound states are formed with higher probability than triplets.

761 citations

Journal ArticleDOI
17 Dec 1998-Nature
TL;DR: In this paper, the authors used 17O NMR to determine the spin susceptibility of the layered oxide superconductor Sr2RuO4 and showed no change in spin susceptibility on passing through the superconducting transition temperature.
Abstract: Superconductivity — one of the best understood many-body problems in physics — has again become a challenge following the discovery of unconventional superconducting materials: these include heavy-fermion1, organic2 and the high-transition-temperature copper oxide3 superconductors In conventional superconductors, the electrons form superconducting Cooper pairs in a spin-singlet state, which has zero total spin (S = 0) In principle, Cooper pairs can also form in a spin-triplet state (S = 1), analogous to the spin-triplet ‘p-wave’ state of paired neutral fermions in superfluid 3He (ref 4) At present, the heavy-fermion compound UPt3 is the only known spin-triplet superconductor5,6, although the layered oxide superconductor Sr2RuO4 (ref 7) is believed, on theoretical grounds8, to be a promising candidate The most direct means of identifying the spin state of Cooper pairs is from measurements of their spin susceptibility, which can be determined by the Knight shift (as probed by nuclear magnetic resonance (NMR)) Here we report Knight-shift measurements of Sr2RuO2 using 17O NMR Our results show no change in spin susceptibility on passing through the superconducting transition temperature, which provides the definitive identification of Sr2RuO4 as a spin-triplet superconductor

755 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
93% related
Excited state
102.2K papers, 2.2M citations
89% related
Raman spectroscopy
122.6K papers, 2.8M citations
87% related
Monolayer
47.3K papers, 1.5M citations
85% related
Ion
107.5K papers, 2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023102
2022194
2021239
2020245
2019261
2018238